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Preface

This book is a natural continuation of the author’s previous book,
“An Introduction to the Theory of Piezoelectricity” (Springer, New
York, 2005), which discusses the three-dimensional theory of
piezoelectricity. Three-dimensional theory presents complicated
mathematical problems due to the anisotropy of piezoelectric crystals
and electromechanical coupling. Very few problems in piezoelectric
devices can be directly analyzed by the three-dimensional theory. To
obtain results useful for device applications, usually numerical methods
have to be used or structural theories have to be developed to simplify
the problems so that theoretical analyses are possible. These two
approaches are both very effective in the modeling and design of
piezoelectric devices.

For piezoelectric devices, dynamic problems are frequently
encountered. This is because many piezoelectric devices are resonant
devices operating at a particular resonant frequency and mode of a
structure. Both surface acoustic waves (SAW) and bulk acoustic waves
(BAW) are used. In the analysis of resonant piezoelectric devices,
usually vibration characteristics like frequency and wave speed are of
primary interest, not the stress and strain for strength and failure
consideration as in traditional structural engineering.

Another rather unique feature of the analysis of resonant
piezoelectric devices is that BAW devices often operate with the so-
called high-frequency modes. Take a plate as an example. The high
frequency modes, e.g., thickness-shear and thickness-stretch, are modes
whose frequencies are determined by the plate thickness, the smallest
dimension. This is in contrast to the low frequency modes of extension
and flexure in traditional structural engineering, whose frequencies
depend strongly on the length and/or width of the plate. Another
characteristic of the high frequency modes is that for long waves their
frequencies do not go to zero but have finite cutoff frequencies. This has
implications in certain unique behaviors of the high frequency modes
such as the useful energy trapping phenomenon.
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vi Mechanics of Piezoelectric Structures

In applications to high-frequency, dynamic problems of piezoelectric
devices, the accuracy of a structural theory is judged by its dispersion
relation of the wave solution of the operating mode of a device in the
frequency range and wave number range of interest. This is different
from traditional structural engineering where, for example, the stress
distribution over the cross section of a beam or plate is often of main
interest.

The study of high frequency modes in piezoelectric plates by
structural theories was initiated by R. D. Mindlin. Mindlin’s effort in the
shear deformation plate theory was mainly for the analysis of thickness-
shear vibrations of crystal plates, a problem motivated by the study of
piezoelectric resonators. Under the influence of the pioneering work of
Cauchy, Poisson and Kirchhoff, Mindlin systematically derived
equations for high-frequency vibrations of piezoelectric plates based on
expansions and approximations in the variational formulation of the
three-dimensional theory, and studied behaviors of the high-frequency
modes using plate equations. A systematic treatment of high frequency
vibrations of crystal plates was given by Mindlin in “An Introduction to
the Mathematical Theory of Vibrations of Plates” (the U.S. Army Signal
Corps Engineering Laboratories, Fort Monmouth, NJ, 1955), which was
not formally published.

This book focuses on high-frequency, dynamic theories of
piezoelectric structures for device applications. It emphasizes the
development of theories and the determination of the frequency ranges
and wave number ranges in which the theories are good approximations
of the three-dimensional theory. Following a brief summary of the three-
dimensional theories of electroelastic bodies in Chapter 1, the
development of two-, one- and zero-dimensional theories for high-
frequency vibrations of piezoelectric plates, shells, beams, rings and
parallelepipeds is systematically presented in subsequent chapters. The
range of applicability of the structural theories obtained is examined by
comparing dispersion relations of simple wave solutions from the
structural theories to the dispersion relations of the exact solutions of the
same waves from the three-dimensional theories. In addition to linear
piezoelectricity, certain nonlinear effects are also considered. As
examples of applications, simple vibrations of piezoelectric plates, shells,
beams and rings are analyzed. A few piezoelectric devices including
resonators, actuators, a mass sensor, a fluid sensor, a transformer, a
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Preface vii

gyroscope and buckling of thin structures are also studied using
structural theories.

The main purpose of the book is to present a procedure systemized
by Mindlin for developing structural theories, rather than collecting all
theories for piezoelectric structures. It is hoped that, having read a book
like this, one can develop various structural theories needed when facing
different device problems.

Due to the use of quite a few stress tensors and electric fields in
nonlinear electroelasticity, a list of notation is provided in Appendix 1.
Material constants of some common piezoelectric materials are given in
Appendix 2.

I would like to take this opportunity to thank Ms. Deborah Derrick of
the College of Engineering and Technology at UNL for editing
assistance with the book, and Mr. Honggang Zhou, my graduate student,
for plotting Figures 2.5.2 and 2.5.3.

JSY
Lincoln, NE
September, 2005
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Chapter 1
Three-Dimensional Theories

In this chapter we summarize the three-dimensional equations of the
nonlinear theory of electroelasticty for large deformations and strong
fields [1,2], the linear theory of piezoelectricity for infinitesimal
deformation and fields [3,4], the linear theory for small fields superposed
on finite biasing or initial fields [5,6], and the theory for weak, cubic
nonlinearity [7,8]. A systematic presentation of these theories can also be
found in [9]. The structural theories of lower dimensions in later chapters
will be derived from these three-dimensional theories. This chapter uses
the two-point Cartesian tensor notation, the summation convention for
repeated tensor indices, and the convention that a comma followed by an
index denotes partial differentiation with respect to the coordinate
associated with the index.

1.1 Nonlinear Electroelasticity for Strong Fields

Consider a deformable continuum which, in the reference
configuration at time f, occupies a region V with a boundary surface S
(see Figure 1.1.1). N is the unit exterior normal of S. In this state the
body is free from deformation and fields. The position of a material point
in this state is denoted by a position vector X = Xxlx in a rectangular
coordinate system Xy. Xy denotes the reference or material coordinates of
the material point. They are a continuous labeling of material particles so
that they are identifiable. At time #, the body occupies a region v with a
boundary surface s and an exterior normal n. The current position of the
material point associated with X is given by y = y,d,, which denotes the
present or spatial coordinates of the material point.

Since the coordinate systems are othogonal,

ik'ilzékl’ IK'IL=5KL’ (1.1.1)

where 8 and &, are the Kronecker delta. In matrix notation,
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2 Mechanics of Piezoelectric Structures

1 0 0
[0u1=[6,1=|0 1 0]. (1.1.2)
0 0 1
S
fo: N t
Reference n
Present

y3

X

y2

Figure 1.1.1. Motion of a continuum and coordinate systems.

In the rest of this book the two coordinate systems are chosen to be
coincident, i.e.,
0=0, 1=1L, h=0L, =L (1.1.3)
The transformation coefficients (shifters) between the two coordinate
systems are denoted by
i, I, =0y. (1.1.4)

When the two coordinate systems are coincident, & is simply the
Kronecker delta. It is still needed for notational homogeneity. A vector
can be resolved into rectangular components in different coordinate
systems. For example, we can also write

Yy =yclk, (1.1.5)
with
Vs = sV (1.1.6)
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Three-Dimensional Theories 3

The motion of the body is described by y, =y,(X,#) . The equations
of motion and Gauss’s equation of electrostatic (the charge equation) are

Ky +pof; =poy;s
Dk k= PE>

where K L is the two-point total stress tensor, py is the reference mass

(1.1.7)

density, f; is the mechanical body force per unit mass, and @ , is the

reference electric displacement vector. pg, a scalar (E is not an index), is
the free charge density per unit reference volume, and a superimposed
dot represents the material time derivative

. DY, d*y(X.n)
i Dt? ot?

(1.1.8)

|X fixed
In Equation (1.1.7), K;; and @ ; are given by:

KLj =FLj +MLj,

1
FLj =yj,KTI‘(S'L’ MLj =JXL,i£0(EiEj —EEkEké‘ij)’ (119)
0
J =det(y, ¢ ), s, =Py v , E=-¢,,
AP

and
D y=£,JX g D, = £, JCx  E} + Py,
Cao =X, X1, (1.1.10)

Sy

Ex =Yk E =—¢,1<, Py =JX P, =—-p, 2.’
K

where & is the electric permittivity of free space, E; is the electric field,
P; is the electric polarization per unit present volume, and D; is the
electric displacement vector. € , is the reference electric field vector,

and @, is the reference electric polarization vector. ¢ is the electric
potential. C; is the inverse of the deformation tensor. y = w(S, ,Ex)
is a free energy density per unit mass, which is a function of € , and the
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4 Mechanics of Piezoelectric Structures

following finite strain tensor:
Sk =ik Vir —6x1)/ 2. (1.1.11)
From Equations (1.1.9) and (1.1.10), we have

o 1

Ky =YxPo _asl"'JXL,igO(EiEj “EEkEkaij)’

KL

1.1.12
ov ( )

OF,

With successive substitutions from Equations (1.1.9) through (1.1.11),
Equation (1.1.7) can be written as four equations for the four unknowns
v;(X,t) and ¢(X,1).

The free energy Y that determines the constitutive relations of
nonlinear electroelastic materials may be written as

Dg= 30JC121L E, — Po

PV (Skr-Ex)
1
=E§ABCD SapScp —€upcEaSpe _-2—72(/13 E, Ep
1 1
+—c SapScpSer + =k E 4SpcSpE

6 3 ABCDEF 2 1 ABCDE

1
—=bupcpEsEgScp — =X E4EREc
2 63 48c

| (1.1.13)
+—c S48ScnSerSen

1
a E,EnScpSpr +—k EERE~S
1 ABCDEF ATBCCDYER 6 3 ABCDE A=BTCYDE

v E4EpECEp +-s

where the material constants

¢ > €upcs X
2 ABCD 2 AB

¢ k bugcps X > (1.1.14)

5 s
3 ABCDEF 1 ABCDE 3 ABC

k , a k

E 2
4 ABCDEFGH 2 ABCDEFG 1 ABCDEF 3 ABCDE 4 4BcD
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Three-Dimensional Theories 5

are called the second-order elastic, piezoelectric, electric susceptibility,
third-order elastic, first odd electroelastic, electrostrictive, third-order
electric susceptibility, fourth-order elastic, second odd electroelastic, first
even electroelastic, third odd electroelastic, and fourth-order electric
susceptibility, respectively. The second-order constants are responsible
for linear material behaviors. The third- and higher-order material
constants are related to nonlinear behaviors of materials.

For mechanical boundary conditions S is partitioned into S, and S7,
on which motion (or displacement) and traction are prescribed,
respectively. Electrically S is partitioned into S, and Sp with prescribed

electric potential and surface free charge, respectively, and
S, us, =5,uS, =S,
N (1.1.15)
S,NSp =8,nSp =0.

The usual boundary value problem for an electroelastic body consists of
Equation (1.1.7) and the following boundary conditions:

yi=Yy, on Sy’
$p=¢ on S,
KyN, =T, on S,

DNy =-G, on §),

(1.1.16)

where ¥, and @ are the prescribed boundary motion and potential, T is
the surface traction per unit undeformed area, and & is the surface free

charge per unit undeformed area.
Consider the following variational functional:

1 |
I(y,¢) = j:)dt IV [EPOY;Y.‘ = Po¥ (Skr-Ex)
+7(SksEx )+ Pofiyi — Pi® :|dV (1.1.17)

+ J:'dtj.s Ty,dS - tldt.‘; Gppds,
where

1 1 }
ﬂ(SKL,EK)=5£0JEkEk =560JCA)N£M£N. (1.1.18)
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6 Mechanics of Piezoelectric Structures

The admissible y; and ¢ for IT satisfy the following initial and boundary
conditions on S, and Sy:

&l =0, W ‘t=I|:O in V,
yi=y, on S, f,<t<t, (1.1.19)
¢=¢ on S, 1 <t<t.

Then the first variation of ITis
tl -s
Al = j dt_" [(KLi,L + Pofi = Po )y,
o v
+(D .- Pr )ogldv

4 — (1.1.20)
- ["ar| &k N, -T)eyds

[ ar [ @.N, +5,)60s.
to D
Therefore the stationary condition of Il implies the following equations
and natural boundary conditions:
Kiyp+Pofi =Po¥ In V,
Dyx=pp in V,

. (1.1.21)
DNy =—0, on §j.
Denoting
Kpg=KySus fu=Fi%m> T =T0ps (1.1.22)
we can write Equation (1.1.7); and Equation (1.1.20) as
K+ Pofur = PoVus (1.1.23)
and
gt ..
Al = ,[ dtIV (K ner + PoSse = PoVas Yu
+(D,— pr)opdV
(1.1.24)

- f dt js, (K N, —T,,),,dS

- f dt LD (DN, +5;)54dS.
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Three-Dimensional Theories 7

1.2 Linear Piezoelectricity for Weak Fields

In linear theory, we introduce the small displacement vectoru =y -
X and assume infinitesimal displacement gradient and electric potential
gradient. The infinitesimal strain tensor is denoted by

1
Sy = —2-(u,)k +uy). (1.2.1)
The material electric field becomes
Ex =E )y x 2Eby > E,. (1.2.2)
Similarly,
M, =0, K, ,=F,, ®& >F, D> D,. (1.2.3)

Since the various stress tensors are either approximately zero (quadratic
or of higher order in the infinitesimal gradients) or about the same, we
use Tj; to denote the stress tensor that is linear in the infinitesimal
gradients. This notation follows the IEEE Standard on Piezoelectricity
[3]. Our notation for the rest of the linear theory will also follow the
IEEE Standard. Then

K, =F,>T, Tg T, (1.2.4)

For small fields the free energy density can be approximated by

1
PV Sk Ex) “EgoJEkEk

1
= ES’ABCD SasScp —€acEaSpe
| ) (1.2.5)
-— E,Ey ——6&,JE E
2)2(AB a%p =5 S0 BB
1 5 1 s
_)EcijkISijSk] _engiSjk _EEUE’EJ = H(Sk[’Ek)’
where
£ =X +&0;. (1.2.6)

2q

The superscript E in c,-fk, indicates that the independent electric

N

constitutive variable is the electric field E. The superscript S in &

indicates that the mechanical constitutive variable is the strain tensor S.
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8 Mechanics of Piezoelectric Structures

In Equation (1.2.5) we have also introduced the electric enthalpy H.
The constitutive relations generated by H are:

OH
i :“a"‘g‘f = c:]EkISkI _ekijEk’
;H (1.2.7)
D, = “OE =eyuSy + 3flchk-

The material constants in Equation (1.2.7) have the following
symmetries:

E E E

(,'Nkl =C ikl =ckl..

wes S”’ . (1.2.8)

eky=€,g,, 8{[ :gﬂ'
We also assume that the elastic and dielectric material tensors are
positive-definite in the following sense:

cfk,S,.jSk, 20 forany S, =35,

and c¢;;S,;S, =0 = S, =0,

M / (1.2.9)
g,f-E,-EjZO forany E,,
and gijS.EiEJ.:O = E =0.

Similar to Equation (1.2.7), linear constitutive relations can also be
written as [3]

i = Cikt Pkl kyS k (1.2.10)
E, =-hySy + BuDy,
i = Syadu ;/ k (1.2.11)
D, =dyTy + &4 Ey,
and
Sy = 8iuTu + 8y D (1.2.12)
E =-guly+ ;Dk'
The equations of motion and the charge equation become
T. .+ P = "i’
iy TR = pi (1.2.13)
D;; =p.,

www.iran-mavad.com
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Three-Dimensional Theories 9

where p is the present mass density, and p, is the free charge density per
unit present volume. The difference between p and p, and that between
Pe and p, are neglected in Equation (1.2.13).

In summary, the linear theory of piezoelectricity consists of the
equations of motion and charge (1.2.13), the constitutive relations

Tij = cijkISkI - ekijEk ’

(1.2.14)

D, = e,-ij et g,jE T

where the superscripts in the material constants in Equation (1.2.7) have

been dropped, and the strain-displacement and electric field-potential
relations

S; =, +uj’,-)/2,
E =-9¢,.

With successive substitutions from Equations (1.2.14) and (1.2.15),
Equation (1.2.13) can be written as four equations for u and ¢ :

ComUpy + € ® i + B = Pl
CrUpyi —€iPy = Pe-

Let the region occupied by the piezoelectric body be V and its
boundary surface be S as shown in Figure 1.2.1. For linear
piezoelectricity we use x as the independent spatial coordinates. Let the
unit outward normal of S be n.

(1.2.15)

(1.2.16)

Figure 1.2.1. A piezoelectric body and partitions of its surface.
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10 Mechanics of Piezoelectric Structures

For boundary conditions we consider the following partitions of S:
Su UST:S¢ USD =S:

(1.2.17)
S, NSr=8;,NSp =0,

where S, is the part of S on which the mechanical displacement is
prescribed, and Sr is the part of S where the traction vector is prescribed.

S, represents the part of S which is electroded where the electric

potential is no more than a function of time, and Sy, is the unelectroded
part. We consider very thin electrodes whose mechanical effects can be
neglected. For mechanical boundary conditions we have prescribed
displacement

u; =u; on S, (1.2.18)
and prescribed traction 7,
T,n,=t, on Sr. (1.2.19)

Electrically, on the electroded portion of S,
$=¢ on S, (1.2.20)

where ¢ does not vary spatially. On the unelectroded part of S, the
charge condition can be written as

D;n;=-5, on Sp, (1.2.21)

where &, is the free charge density per unit surface area.

On an electrode S, the total free electric charge (. can be
represented by

0 :I —n.D.dS . (1.2.22)
(4 S¢ 1 14

The electric current flowing out of the electrode is given by

I=-0,. (1.2.23)
Sometimes there are two (or more) electrodes on a body that are
connected to an electric circuit. In this case, circuit equation(s) will need
to be considered.
The equations and boundary conditions of linear piezoelectricity can
be derived from a variational principle. Consider [4]
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Three-Dimensional Theories 11

. 1
II(u, @) = dt [_p’;‘idz‘ -H(S,E)+ pfiu;, — pe¢}dV
j:’ IV 2 (1.2.24)

+ f dt [ Guds - j‘ dt [ 5.pds.

u and ¢ are variationally admissible if they are smooth enough and
satisfy
ou; |, =ou;|,=0 in V,

u,=u;, on §,, l,<i<t, (1.2.25)
¢=¢ on S, f,<t<t.

The first variation of IT is

o= ["ar[ [, + o~ pi)su + D, - p)s#lav

(1.2.26)
- f dt LT (Tyn, =)o, ds - [ i LD (Din, +,)5¢dS.
Therefore the stationary condition of Il is
T,,+pfi=pi; in V, ty<t<y,
D,=p, in ¥V, t,<t<t, (1227)

Tyn, =t on S, t,<t<t,
Dn,=-c, on §p, [,<t<t.
We now introduce a compact matrix notation [3,4]. This notation
consists of replacing pairs of indices ij or kI by single indices p or g,

where i, j, k and [ take the values of 1, 2, and 3, and p and g take the
values of 1, 2, 3, 4, 5, and 6 according to

jorkl: 11 22 33 230r32 3lorl3 12or2l

(1.2.28)
porg: 1 2 3 4 5 6
Thus
Cijit > Cpgs €y = €5 Tij - Tp. (1.2.29)
For the strain tensor, we introduce S, such that
§1 =81, 83 =8y, S§3=85, (1.2.30)

S4 = 2S23, S5 =2S31, S6 = 2S12.
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12 Mechanics of Piezoelectric Structures

The constitutive relations in Equation (1.2.7) can then be written as

_E
T,=c,,S, —enE,,

(1.231)
D, =e,S, +&3E,.
In matrix form, Equation (1.2.31) becomes
’Tl\ CIEI clEz ClE3 Cﬁ ClEs cﬁs Sl1 en €y ey
T, Cfl c:fz 02E3 Ci czEs czE(, S, € €n €xn E
T L ek ek ch ok kL <S3 [ _|es en ey El
TT4 c‘ﬁ C4Ez C4Ez Cﬁ cf5 Cfs Sy €14 €y €y E2 ’
To| |cf cfh chy ok ok ck||Ss| |es es e |
T csEl CsEz szs C6E4 Cgs CeEe S €6 €2 €36
S
S
D, € 6y €13 €y &5 € S2 3181 5182 51S3 E,
Dyr=ley ey ey ey es ey <S3 rt 551 552 52Sz E, .
D, €3 €3y €33 €3 €3 €3 S: 53Sl 5382 5'5?3 E;
S

(1.2.32)

1.3 Linear Theory for Small Fields Superposed on a Finite Bias

The theory of linear piezoelectricity assumes infinitesimal deviations
from an ideal reference state of the material in which there are no pre-
existing mechanical and/or electrical fields (initial or biasing fields). The
presence of biasing fields makes a material apparently behave like a
different material, and renders the linear theory of piezoelectricity
invalid. The behavior of electroelastic bodies under biasing fields can be
described by the theory for infinitesimal incremental fields superposed
on finite biasing fields [5,6], which is a consequence of the nonlinear
theory of electroelasticity. This section presents the theory for small
fields superposed on finite biasing fields in an electroelastic body.

Consider the following three states of an electroelastic body (see
Figure 1.3.1).
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Three-Dimensional Theories 13

Figure 1.3.1. Reference, initial, and present configurations of an
electroelastic body.

In the reference state the body is undeformed and free of electric
fields. A generic point at this state is denoted by X with Cartesian
coordinates Xx. The mass density is po.

In the initial state the body is deformed finitely and statically, and
carries finite static electric fields. The body is under the action of body

force f., body charge pp, prescribed surface position X, , surface

a *
traction T, ,
deformation and fields at this configuration are the initial or biasing
fields. The position of the material point associated with X is given by x

= x(X) or x,= x(X), with strain Sy, . Greek indices are used for the
initial configuration. The electric potential in this state is denoted by
¢°(X), with electric field E 2 x(X) and ¢°(X) satisfy the following static
equations of nonlinear electroelasticity:

surface potential ¢° and surface charge 6"‘2 . The

513L = (xa,Kxa,L —0x)/2, Eg = —¢3(, Eg = _¢(()19

oy
TI(()L =P P >
SKL Ski-Ex
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14 Mechanics of Piezoelectric Structures

J? =det(x, ),
Ky '_‘xa,LTlgL + My, ®3(=€0J0XK,aXL,a£2+TOK,
0 0 00 1 .00 (1.3.1)
Mg, =J XK”BSO(E/,EQ —-2—E7E75ﬂa),
K[(;a,K +p0fr? =05 (DOK’KZ pg

In the present state, time-dependent, small, incremental deformations
and electric fields are applied to the deformed body at the initial state.
The body is under the action of f, , p;, 7,, 7—", ,$ and & . The final
position of X is given by y = y(X,f), and the final electric potential is
aX,h). y(X;f) and ¢X,r) satisfy the dynamic equations of nonlinear
electroelasticity:

Sk, = (yi,Kyi,L —0x )2, Ex= —¢,K5 E = _¢,i

0 d
K Poaw ’ K—_Poag ’
Ski Sk -Ex K s 2
K, =y,Tg, + My, Dy=6JCqE +P, (13.2)

1
MLj =JX, ;& (EiEj _‘2'EkEk5y )

K +p0f; =PoY;s Dgx=Ps-

Let the incremental displacement be u(X,?) and the incremental
potential be ¢'(X,) (see Figure 1.3.1). u and ¢' are assumed to be
infinitesimal. We write y and ¢ as

yi (Xat) = 5ia [xa (X,t) + ua (Xs t)]:
#(X,0)=¢" (X,0)+¢' (X.1).

Then it can be shown that the equations governing the incremental fields
u and ¢' are

(13.3)

1 1 .
KKa,K +p0fa _pOua’

. . (1.3.4)
Dk k= PEs
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Three-Dimensional Theories 15

where £ and p} are determined from

0, 41
-/; =6ia(fa +fa))
0, I
PE = PE t PE>
and the incremental stress tensor and electric displacement are given by
the following constitutive relations:

(13.5)

K1, = Grptatiaps = RoyErs
v el (1.3.6)
D= Ry u, | + Ly, Ep

where ) ="¢,11< . Equation (1.3.6) shows that the incremental stress

tensor and electric displacement vector depend linearly on the
incremental displacement gradient and potential gradient. In Equation
(1.3.6),

o’y

G =x, —_—
Kaly M Po 050,05,

Xy N
SkoER

0
+ 741,04, + 8kary = Glika

O’y (1.3.7)
Ry, =—Po ——— X, 0 + Tk,
KLy Po 0,85, o yM T gLy
az
Ly =-po =¥ _ +lgy = L.
OELOE, s,
where
Exaty = £,J°[E° Eg (X pX,, — X, X, )
0 -0
~E E, Xy p X1 p
+E,2E;)(XK,aXL,/i _XK,ﬂXL,a)
1 (1.3.8)

+_2_E2E2 (XK,yXL,a "‘XK,aXL,y)]s

Ty =60 (Eg Xy o X1, —EgXy X, —E) X, X, ),
lKL = gOJOXK,aXL,a'
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16 Mechanics of Piezoelectric Structures

Gkay > Ry, > and Ly, are called the effective or apparent elastic,

piezoelectric, and dielectric constants. They depend on the initial
deformation x(X) and electric potential ¢°(X).

In summary, the boundary value problem for the incremental fields u
and ¢' consists of the following equations and boundary conditions:

K;(a,K + oSy = poil, IV,
®11<,K= pp in V.
Kll,y =GLyMaua,M +RML7¢,1M in V,
OY=R,, u,, —L,4, in V,
K KLy y,L KL¢,L (139)
u,=u, on S,
1_ 71
¢ =¢ on S,
KN =T, on S,
DY N, =-0; on §,.
Consider the following variational functional:
1 tl 1 . . 1
H(ll,¢ )= '[0 dt IV (_2_ Poll Uy _EGKaL;/uK,auL,y
1
_RKL7¢,1KuL,7 +§'LKL¢,IK¢,’L + Pofo:ua - P115¢1 )av (1.3.10)
h 7l h =1 1
+ L dt LT T'u,dS - f, dt LD 5.4'ds.

The admissible u and ¢' must satisfy

ou, |,=0u, |, =0 i V,
u, =i, on S, 1, <t<t, (1.3.11)
¢'=¢' on Sy o <t<t.
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Three-Dimensional Theories 17

The first variation is found to be
1 4 1 1 .
m(“’¢ )= J: dt -[V [(KLa,L + pOfa —pOua )5ua
+(Dy g — Pp)08' 1AV
“ 1 _ (13.12)
- ['ar| (KN, -T})ou,as
ho  9Sr
_ I" di | (DN +5})59'dS.
(% D
Therefore the stationary condition of the functional gives the following

governing equations and boundary conditions:

Kiox + Pofa = poli, in V,
Dex=pp in V. (1.3.13)
K N, =T, on S,
OYNy=-G;, on Sp.
Denoting
Kiv =KiaOorss for = faOus

= = (1.3.14)
Ty =TS, ty =1,8,,

we can write Equation (1.3.12) as
1N 1 1 1 .
Al(u,¢") = Jj dt J;/ (K a1 + PoSfrs = Poling YUy,
+(Dy x — Pp)SP' 1AV

1 _ (13.15)
~ [ (KN, ~T))du,dS
fo T

- [ [ @in+Th8pas.
to D

In some applications, the biasing deformations and fields are also
infinitesimal. In this case, usually only their first-order effects on the
incremental fields need to be considered. Then the following energy
density of a cubic polynomial is sufficient:
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18 Mechanics of Piezoelectric Structures

1 1
PV (S, Ex )= ECABCDSABSCD —€,45cE4S8c — EZABEAT:B
1 1
+ ECABCDEFSABSCDSEF + EkABCDEEASBCSDE (1.3.16)

1
- ’ibABCDfAfBSCD - EIABCf:AfBgC >

where the subscripts indicating the orders of the material constants have
been dropped. For small biasing fields it is convenient to introduce the
small displacement vector w of the initial deformation (see Figure 1.3.1),
given as

Xy =0, Xy t+w,. (13.17)

Then, neglecting the quadratic terms of the gradients of w and ¢°, the
effective material constants take the following form [5,6]:

GKaLy = cKaLy + cKaLy’
Ryy, =€, 851, (13.18)
Ly, =g +Ex,

where

A 0
Crary =Tx10ny + CxaanWyn + CxnryWan
0 0
+ CrarpSas + Kakor, Eas
A 0 0
€xr, =€xiWyrm ~ KirupSap + b aki, Ea

+ & (fgaLy - 75251(;/ - fz(\)/l SuyOx1,)s
(13.19)

A 0 0 0 0

Ex =bxrapSap + Xx1aEa + E0(Sans Ok — 28k ),
0 _ 0 0

Ty, =CkiapSap —€axrEa>

0
Sup=(Wyp+wy 4)/ 2,
0 0
Eyx = _¢,K .

In certain applications, e.g., buckling of thin structures, consideration
of initial stresses without initial deformations is sufficient. Such a theory
is called the initial stress theory in elasticity. It can be reduced from the
theory for small fields superposed on a bias. First we set x = X,
Furthermore, for buckling analysis, a quadratic expression of y with
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Three-Dimensional Theories 19

second-order material constants only and the corresponding linear
constitutive relations are sufficient. The biasing fields can be treated as
infinitesimal fields. Then the effective material constants sufficient for
describing the buckling phenomenon take the following simple form:

_ 0
Gray =Cxary t 15100y

Ry, =ey, + & (EpS,, —EL 5y, — Ey G, Ox), (1.3.20)
Ly, =é&g;,

where T}, is the initial stress and Ej is the initial electric field.

1.4 Cubic Theory for Weak Nonlinearity

By cubic theory we mean that effects of all terms up to the third
power of the displacement and potential gradients or their products are
included [7]. Cubic theory is an approximate theory for relatively weak
nonlinearities, and can be obtained by expansions and truncations from
the nonlinear theory in the first section of this chapter. The resulting
equations are:

1
F.=6,|c Uypte b, +—C Uy U
- K,A B
=M\ G g YA T CamPatSE YAk,
+C Uy Uy pt+—C U, glcp

2LKAB 2 3 LMABCD

‘e gty xPa—d

1
u —=b
L BCLM 5.9 4 > s D 4P p

Uy, pUp MUy p +—C Uy, U, U,
‘M .RYk AY¥k B M, k¥4,84cD
’ ’ ’ 2 3LKABCD BEC

(14.1)

+—=c Uy pglUpy ~U +—=C U, pUrp
A,B
BYK.CYK,D 64 BCDEF A,B*CD"E,F

1
-d Uy ~U ——d Uy U
B U kPa 2% inein KB xcPa

1
- EchBCDELM uB,C”D,E¢,A - EbABLKuM,K¢,A¢,B
1 1

uc,D¢,A¢,B +—=d ¢,A¢,B¢,C j' ,

6 3 ABCLM

+—a
2 1 ABCDLM
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20 Mechanics of Piezoelectric Structures

P, =e€pcHpc — %’ Pyt EeLBCuK,BuK,C
AL

1
- ‘i‘{LBCDE UpclUpg — bALCD”C,D¢,A
+ ! ) ! d u
— - Up U
2 %{ABL ATB a0 Lpepr BT KDPTKE (14.2)
1 1 o
- g‘ziLBCDEFG UpcUp plUp g — EbALCDuK,CuK,D¢,A
1 1
+— +—
> ‘{ALCDEF uC,DuE,F¢,A > 631ABLDE “D,E¢,A¢,B
1
-——X ¢,A¢,B¢,c s
61 41
1
M =¢y6 |:¢,L¢,M - E¢,K¢,K5LM ~ PP,
~ PPtk + 1 Pptxx —PrPxUr (1.4.3)
1 1
+ P PrUp Oy + 5¢K PxUpp — E¢,R¢,RuK,K O rm }’
SOJC&EK =& [_ P +t@xu x —Gugx +Pplig;
1
—PuUpxlUgp tPxUp p¥p g — ‘2‘¢,LuK,KuM,M
(1.4.4)

+ ’5¢,LuK,M Uy x — ¢,M Up kUpy x

+ Pty LUk _¢,M”M,K”K,L]-

A special case of cubic theory is the case of relatively large
mechanical deformations and weak electric fields [8]. In this case all
electrical nonlinearities can be neglected. The following energy density
is sufficient:

1 1
Po¥ = ECABCDSABSCD —e€,48cE4Spc ”EZABEAEB
(1.4.5)

+ gcABCDEFSABSCDSEF + 2_40ABCDEFGH SasScnSerSch -
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Three-Dimensional Theories 21

Keeping the linear terms of the electric potential gradlent and up to cubic
terms of the displacement gradient, we obtain

Kim =Cramstrs + exnPx
+ CZMRSKNuR,SuK,N + Clrrsknt UpsUk NUI s (1.4.6)
Dy =egpslips — ExP1»
where

1

4 —_—
CIMRSKN —‘2‘(CLMRSKN +CramsOkr + Crvrs Ok )s

. 1
CIMRSKN = ‘g C LMRSKNIJ (1.4.7)

+ ) (CLaxnssOrt + Crnss Onax Orr + € Lvmsiy Ona )-
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Chapter 2
Piezoelectric Plates

In this chapter we derive two-dimensional equations for a
piezoelectric plate. First we examine a few exact solutions of vibration
modes and propagating waves in plates from three-dimensional
equations. They provide guidance in developing two-dimensional
theories and serve as criteria for determining the accuracy of two-
dimensional theories. Then two-dimensional plate equations are
systematically derived.

2.1 Exact Modes in a Plate

The specific three-dimensional problems to be examined are the
thickness-shear vibration of a quartz plate [10] and waves propagating in
a plate of polarized ferroelectric ceramics [11,12].

2.1.1 Thickness-shear vibration of a quartz plate

Quartz of crystal class 32 is probably the most widely used
piezoelectric crystal. Plates of rotated Y-cut quartz [4] are particularly
useful for thickness-shear resonators, filters, and sensors because of the
existence of pure thickness-shear modes and their frequency stability.
Langasite and some of its isomorphs (langanite and langatate) are
emerging piezoelectric crystals which have stronger piezoelectric
coupling than quartz and also belong to crystal class 32. Rotated Y-cut
quartz exhibits monoclinic symmetry of class 2 (or C;) in a coordinate
system (x1,x;) in and normal to the plane of the plate. Consider an
unbounded, rotated Y-cut quartz plate (see Figure 2.1.1). The two major
surfaces are traction-free and are electroded, with a driving voltage
V exp(iot) across the thickness.

22
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Piezoelectric Plates

X2

X1

2h L S

Figure 2.1.1. An electroded quartz plate.

2.1.1.1 Boundary value problem

The boundary value problem is:
T

iy =P, D=0, |xy|<h,

Ty =cyuSu—ewyEe, D, =euSy+eiky, |xI<h,
Sy =@ +u; ;)2 E=-¢, |xh,

sz = 0, Xy = ih,

P(x, = h)—P(x, = —h) =V exp(iot).

For monoclinic crystals, the material tensors c,f,d > €

23

@.1.1)

and a,js. can be

represented by the following matrices under the compact matrix notation:

& Sy Gz ¢4 0 0
Cn Cp C3 €y 0 0
€33 € €3 ¢ 0 0
Cyp Cip Ci3 Cyy 0 O
0 0 0 0 c5 cg
0 0 0 0 ¢4 cg

e, e, e; ¢, 0 0 e, 00
0 0 0 0 ey exl,] 0 &,
0 0 0 0 e ey 0 & &5
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24 Mechanics of Piezoelectric Structures

Consider the possibility of the following displacement and potential
fields:

U = uy(x;)exp(ian), u, =u; =0,
¢ = P(x, )exp(iax).

The nontrivial components of strain, electric field, stress, and electric
displacement are

(2.1.3)

28, =u,, E,=-¢,, (2.1.4)
and

Ty =csethyp + €50y,  Tiy = Cogthy 5 + €685, @.1.5)
D, = ey, - 522¢,2s Dy = ey, — 323¢,2=

where the time-harmonic factor has been dropped. The equation of
motion and the charge equation require that

_ _ 2
Ty = Costhypp + Ex5P 00 = —PO Uy

(2.1.6)
D, , = eyt 5 — 522¢,22 =0.
Equation (2.1.6), can be integrated to yield
$="2u +Bx,+B,, 2.1.7)

€n

where B, and B, are integration constants and B, is immaterial.
Substituting Equation (2.1.7) into the expressions for T3, D,, and
Equation (2.1.6),, we obtain

Ty =Cesthy + €36By, Dy =—B,, (2.1.8)
Costh = ~P O Uy, (2.1.9)
where
g
Co6 = C66(1+k226)3 k226 =2 (2.1.10)
€22C66
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Piezoelectric Plates 25

The general solution to Equation (2.1.9) and the corresponding
expression for the electric potential are

u, = 4;sinéx, + 4, coséx,,

2.1.11
¢ =225 (4 sin&, + 4, cos &) + Bx, + By, 2.1.10)
&n
where 4, and 4, are integration constants, and
£=L o, 2.1.12)

Cs6

Then the expression for the stress component relevant to boundary
conditions is

T,; = cee(AEcos&x, — A Esinéx,) + ey B, . (2.1.13)
The boundary conditions require that
Coe A& coséh— A, Esinéh + ey B, =0,
Ces A& coséh+ A, Esinéh + ey By =0, (2.1.14)
296 4 singh+2Bh=V.
£
We can also add the first two, and subtract the first two from each other:
Coo A& cOsEh + 6B, =0,
Ces A, EsinEh =0, (2.1.15)

2525 4 sinéh+2Bh=V.
&

2.1.1.2 Free vibration solution

First, consider free vibrations with ¥ = 0. Equation (2.1.15)
decouples into two sets of equations. For symmetric modes,

CeeA,EsinEh = 0. (2.1.16)
Nontrivial solutions may exist if
sinch=0, (2.1.17)
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26 Mechanics of Piezoelectric Structures

or
§<">h=”—2’5, n=0,2,4,6,-, (2.1.18)

which determines the following resonant frequencies:

o™ =% (S, _02 4,6, (2.1.19)
2\ p

Equation (2.1.17) implies that B, = 0 and 4; = 0. The corresponding
modes are

e
u =cosEMx,, ¢=-Lcos&Mx,, (2.1.20)
&y
where n = 0 represents a rigid body mode. For anti-symmetric modes,

Ces A& coséh+eyB) =0,

2.1.21
2% 4 sinéh+2Bh=0. @.121)
€
The resonance frequencies are determined by
Cos5 COSEH ey )
fl6—sin§h j | = CesChoos Sh — g—Zsin Eh=0, (2.1.22)
&n
or
tan§h==§;—, (2.1.23)
ks
where
2 2 2
2R L M. T (2.1.24)

- N 2
ECes  EnCes(lthy) 14k

Equations (2.1.23) and (2.1.21) determine the resonant frequencies and
modes. If the small piezoelectric coupling for quartz is neglected in
Equation (2.1.23), a set of frequencies similar to Equation (2.1.19) with
equals odd numbers can be determined for a set of modes with sine
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Piezoelectric Plates 27

dependence on the thickness coordinate. Static thickness-shear
deformation and the first few thickness-shear modes in a plate are shown

VA%
w2

/

[
\

I
w

Static n =1 n=2

Figure 2.1.2. Thickness-shear deformation and modes in a plate.

2.1.1.3 Forced vibration solution

For forced vibration we have 4, = 0 and

0 ey
N — V. (2.1.25)
— h ) H ol
cﬁg‘f Cosh @xl oz Shoos -2 sin
2-%sinéh 2h &y
L))
Cebcoséh 0
2% singh v Ve .
=L ‘222 e Ces6 0SS (2.126)
C, COS e
6; B g Ehooséh— 228 sinéh
2-%.sinéh 2h &n
&

www.iran-mavad.com
2 ge (padige 5 Ol sadils g e



28 Mechanics of Piezoelectric Structures
Hence

r & - (2.1.27)

D, =-&y,B =-¢ = = ,
T o —kltangh ¢

where 0, is the surface free charge per unit area on the electrode at x, =
h. The capacitance per unit area is then

_Ge_fn_ 9 (2.1.28)
V. 2h &h—kixtanh

Note the following limits:

11m C = gﬁ,
€550 2h
lim C =gi_1_2= En (11, (2.1.29)
w—0 2h - k26 2h
1+ kX

2.1.2 Propagating waves in a plate
Consider an unbounded piezoelectric plate of thickness 2% as

schematically illustrated in Figure 2.1.3. The major surfaces of the plate
are traction-free and are electroded. The electrodes are shorted.

Propagation

direction
_—

X1

x &

Figure 2.1.3. Propagating waves in a piezoelectric plate.
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Piezoelectric Plates 29

2.1.2.1 Eigenvalue value problem

We study straight-crested waves without x; dependence. Then the
homogeneous form of Equation (1.2.16) takes the following form:

Crythy gy + Crally 51 + Cralhy oy + Cisthy gy + (U 9y +Up11)
+e 0 +eyudy
+C6lh 13 + Coglhy 9y + Caglhy 23 T Csgly 1y + Coq (U 9y + s 1)
+e6P1y + Py = Pl

Cigt11 + Cogty o1 + Caglhz 31 + Csglhy 1) + Ceg (U 51 +Up11)
+esf11 + e
+Cpally gp F Cpplhy 5y + Colhy 5y + Cosths 13 + Cog (U 3 + 2y 13)
P, +endy = piy,

CisUy 1y + Cosly 51 + Cystly oy + Csslh 1y + Csg (U 5y + 2y )
+esfy +esdy
+ Clallyyp + Coglhy 5y + Caglhs 3p + Cyslhy 13 + Cag (U 3 + 2 13)
+ Py + ey = pis,

gy F el 51 + el ) + sty + e (U ) +1y)
—&ndn - Y
eyl gy +exnlly 5y + el 5 + sty + ey (U 5y Ty )

2.1.30
- 312¢,12 - 522¢,22 =0. ( )

We seek solutions representing waves propagating in the x; direction:
u,(x,1) = 4, exp(krpe, )expliChr, ~ )],
#(x,1) = A, exp(knx, )exp[i(kx, — ar)],

where k and @ are the wave number in the x; direction and the frequency,
respectively. 1k is related to the wave number in the x, direction. 4; (j =
1, 2, 3) and 4,4 are complex constants, representing the wave amplitude.

(2.131)
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30 Mechanics of Piezoelectric Structures

Substitution of Equation (2.1.31) into Equation (2.1.30) leads to the
following four linear algebraic equations for 4; and Aj:

[P’ + K (17 eqs + i271G6 — 1)) 4,
+ I (7 ey + incgs + 101, — €16 ) Ay
+ k2 (1 cyq + iness + incy, —ci5) s
+ &% (17 ey + injey, +ine, ~ e, )4, =0,

R (17 a6 + 11y, + iTjCos = Ci6 )4,
+[po® + k(7 cyy + 21055 — Cog )14,
+ k(1 cop + i1Cos + ifeyg — Cog )y
+ k(' ey, + infeys + injey, — €6 )4, =0

2 (17 c4q + incyy +incsg —¢5) 4
+ k2 (772024 +inCys +11Cy5 ~ C56) 4,
+po® + k(7 cyy +i2nc,s ~ c55)1 45
+ k% (1% ey + ineys +ine,, —ey5) Ay =0,

(7ey + injey, +ineys — €, )4,
+ (1’ ey, +iney + ine, — e )y
+(n’ey +ineys +ine, —ejs) A (2.1.32)
- (7726‘22 +i2ng; —&)4, =0.

For nontrivial solutions of 4; and/or 4,, the determinant of the coefficient

matrix of the above equations must vanish. This leads to a polynomial
equation of degree eight for . We denote the eight roots of the equation

by 1oy, and the corresponding eigenvectors by (Z}”’),Z‘f”’) ,ym=1,2,

..., 8. Thus, the general wave solution to Equation (2.1.30) in the form of
Equation (2.1.31) can be written as

8
U, = Zc(m)Ai(M) exp(k Memy*2 )eXp[i(kxl —an)
m=1 (2,1 33)

8
P= ZC(”,)A‘f”') exp(k],yX, yexpli(kx, — ax)],
m=1
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where the constants Cy,y (m = 1, 2, ..., 8) are to be determined.
Substituting Equation (2.1.33) into

L (xy = £h) = [C) | + €3 P 5,0 =0 (2.1.34)

and
P(x, =th)=0 (2.1.35)

yields the following eight linear algebraic equations for Cy:

8
Z(clziA1(m) + czzﬂ(m)Az(m) + c2477(m)A3(m)

m=1

+Cosid™ + Co oy A + Crgidy™

iyt - Thn,h _
+ eygid;™ +enTlm A Ve Clmy =0,

ZS: (cisid™ + 02677(,")22('”) + 046'7(m)Z3( "
m=l

+Csgids™ + 06677(»1)21('") + Cogids™

+ eléiz‘g'”) + e2677(m)2§'”) )eik""”’hC(m) =0,
Zs:(cuizl(m) + 02477(m)22(m) + C44’7(m)23(m)
m=l

+ygid™ + 04617(,,,)21('") +CygidS™

+e,i4" + 324'7(m)2§m) )eik”('"’hc(m) =0,
3 AmErC, 0.
=1 (2.1.36)
For nontrivial solutions of C,, the determinant of the coefficient matrix
of Equation (2.1.36) has to vanish, which yields the frequency equation

that contains w and k. The above derivation is for materials with general
anisotropy.
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32 Mechanics of Piezoelectric Structures

2.1.2.2 Numerical example

As a numerical example, consider a plate of polarized ceramics poled
in the x; direction with
h C 63 O
¢y o ¢z 0
Gy €3 ¢ 0
0 0 0 ¢y
0 0 O
0 0 O

0
0

0 0 0 0 ¢5 0](g, 0 O
0
0

oS O o O
S O © © O

0 0 0 ¢ O 00 & 0], (2.1.37)
e € e3 0 0 0 0 &5
where cgs = (c11 - ¢12)/2. Polarized ceramics are transversely isotropic.

Their linear behavior described by Equation (2.1.37) is the same as
crystals of 6mm symmetry. For the above straight-crested waves, when

g R kh 27

O ' 1 i 1
0 1 2 3 4 5

Figure 2.1.4. Dispersion relations of waves in an electroded ceramic plate
poled along the x; direction.
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the poling direction is along the x; axis, u; is coupled with u,, and w3 is
coupled with ¢, but the two groups do not couple to each other. The
dispersion relations (w versus k) for PZT-5H are plotted in Figure 2.1.4.

There exist an infinite number of branches of dispersion relations.
Only the first nine branches are shown. The wave frequencies are
normalized by the lowest thickness-shear frequency

T |Ca

0, =—_ |-% . 2.1.38
=20\ (2.1.38)

The dispersion relations are labeled as follows, along with the dominant
displacement component at small wave numbers:

E = extension (),

F = flexure (u,),

FS = face-shear (u3),

TSh = thickness-shear (u;),

TSt = thickness-stretch (i),

TT = thickness-twist (u3),

R = Rayleigh surface wave (¢, and u,),

BG = Bleustein-Gulyaev surface wave (u3).

In the figure, the three branches passing the origin are the so-called low
frequency branches. They represent the extensional, flexural, and face-
shear waves. The other six branches are high-frequency branches, which
have finite intercepts with the @ axis. These intercepts are called cutoff
frequencies, below which the corresponding waves cannot propagate.
Cutoff frequencies are in fact the frequencies of pure thickness modes.
The six high frequency branches shown represent three thickness-shear
waves, one thickness-stretch wave, and two thickness-twist waves. One
of the two dotted lines in the figure is the well-known Rayleigh surface
wave, which can propagate over an elastic half-space and is not
dispersive. The other dotted line is the well known Bleustein-Gulyaev
surface wave which has only one displacement component #; and can
propagate over a piezoelectric half-space but does not have an elastic
counterpart. These two surface waves are included as references. It is
seen that for short waves with larger £, the frequencies of the extensional
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34 Mechanics of Piezoelectric Structures

and flexural waves approach that of the Rayleigh surface wave.
Similarly, for short waves, the frequencies of the face-shear wave
approach that of the Bleustein-Gulyaev wave.

2.2 Power Series Expansion

Consider a piezoelectric plate (see Figure 2.2.1). The plate is
assumed to be thin in the sense that its thickness is much smaller than the
in-plane dimensions or the in-plane wavelength we are interested in. The
key to the derivation of two-dimensional plate equations is the
approximation of the variation of the fields through the plate thickness
(see Figure 2.1.2) by some known and simple functions. Then plate
equations can be derived systematically by inserting the approximate
fields into the variational formulation of the three-dimensional theory.
This procedure can be traced back to Cauchy, Poisson and Kirchhoff
according to Mindlin [13]. The resulting two-dimensional plate equations
are much simpler than the three-dimensional equations, and therefore
often allow analytical solutions.

Bottom
electrodes

2h {1 \ —

Figure 2.2.1. A thin piezoelectric plate.
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2.2.1 Expansions of displacement and potential
2.2.1.1 Polynomial approximation of thickness modes

The exact thickness modes (except the static one) are sinusoidal
along the plate thickness (see Figure 2.1.2). Since power series are
simple to differentiate and integrate, early approximations of the
thickness variations of the fields were in terms of power series. This
approximation can be very accurate because trigonometric functions can
be well approximated by power series. For example, in Figure 2.2.2, the
first and the second thickness-shear modes in Figure 2.1.2 are compared
with two simple polynomials, where

Black triangle: y =sinzx /2,

x3

3
Cross: y = >(x—2),
ross: y=3(=3) 2.2.1)

Square: y = cos 7x,

White triangle: y = 2(x* —1)* - 1.

Figure 2.2.2. Thickness-shear modes and their polynomial
approximations.
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36 Mechanics of Piezoelectric Structures

2.2.1.2 Polynomial expansions

In a series of papers [14-17], Mindlin developed theories for high
frequency vibrations of isotropic, anisotropic, and piezoelectric plates by
power series expansions in the plate thickness coordinate. We now
derive two-dimensional equations for a piezoelectric plate in the manner
of [17]. First we expand the mechanical displacement and the electric
potential into power series in x;

o
U, (X%, %3,1) =z XU (3, %5, 1),
n=0

" (2.2.2)
¢(x1,x2,X3, ) Z x (n)(x]5x2at)
n=0

Our goal is to obtain two-dimensional equations for #(” and ¢ . The
lower order two-dimensional displacements can describe the following

deformations:

ul(o), u§°> — extension,

- ﬂexure

ul(l) ,u; ' — fundamental thickness-shear,

- fundamental thickness-stretch,

(2), — symmetric thickness-shear,

For piezoelectric device applications we want to derive plate
equations that can describe the thickness-shear and thickness-stretch
deformations well. It is important to note that these deformations have
different behaviors in static and dynamic problems. For example, the first
or fundamental thickness-shear mode of » = 1 in Figure 2.1.2 is
sinusoidal along the plate thickness. However, the static thicken-shear
deformation shown in the same figure is linearly varying along the plate
thickness. Therefore the fundamental thickness-shear has different
distributions along the plate thickness in static and dynamic problems.
One simple expression can only approximate either the static or the
dynamic deformation well, but not both.
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We are mainly interested in dynamic problems. Obviously the
sinusoidal variation of the fundamental thickness-shear deformation can
be well approximated by a cubic polynomial. However, we are not
interested in accurately describing the field variation along the plate
thickness. Our main goal is to develop plate theories than can predict the
frequencies and dispersion relations of these modes accurately. For this
purpose, following Mindlin, we use a linear function x3u,(,1)(x1,x2,t), a=
1, 2, to approximately describe the fundamental thicken-shear motion.
The main advantage of using a linear function is its simplicity. The error
due to the approximation in resonant frequencies can be reduced or
removed by introducing some correction factors. Overall this is a simple
and accurate approach.

Shear correction factors are essentially not needed when using
sinusoidal or higher-degree polynomial approximations for thickness-
shear modes in the sense that the thickness-shear frequencies can be
predicted exactly or accurately. This approach involves more algebra. In
addition, the static thickness-shear behavior cannot be described well by
a sine function or a cubic or higher-degree polynomial. Hence
corrections may be needed for low frequency behaviors.

2.2.2 Strains and electric fields

From Equation (2.2.2) and the strain-displacement relation and the
electric field-potential relation in Equation (1.2.15), we obtain

Sy = 2 WS, E =Y ¥E", (223)
where

1
SO = Z (4" 4+ 4™ 4 (n + 1S 6™ + 8, 4D,
y 2[ I b ( X J 5 )l 224

Ei(n) - _¢’(in) _ (n + 1)53i¢(n+1).

The first few orders of strains and electric fields have the following form:

Sl( ) J— u‘(,])’ S'( ) — u(,), S'( ) _ u( )’ ( )
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SO =u®, 5O =uf), SO =2u?,

SO =) +2uP, SO =) +247, SO =ul) +u), @:26)

SO =, SO =, 5P =3, -

SP =u@ +3u, SO =u®+3u®, SO =u@+u®,
E® =g, EP=-¢D, E®=-¢", (2.2.8)
EP =-¢0, EP=—¢, EP=-2¢?, (2.2.9)
EP =-¢P, EP =—¢P, EP =-3¢0. (2:2.10)

The zero-order plate strains in Equation (2.2.5) describe homogeneous
deformations of a plate element. The first-order strains in Equation
(2.2.6) represent higher-order deformations of a plate element like
curvature and twist, etc. Pictures of zero- and first-order deformed plate
elements can be found in [13].

2.2.3 Constitutive relations
The plate resultants of various orders are defined by

h
T = j T,¥ds,, D= [ Dxjdx,. @2.11)
Substituting the three-dimensional constitutive relations from Equation
(1.2.14) into Equation (2.2.11), we obtain the plate constitutive relations
as:

I; ") = Zan(Cylekl eky*E/Em))’

(2.2.12)
D" = Zan(e,ij('”) +&,E™),
where
m+n+1
B - J-h m s, = 2h {((m+n+1), m+n even, 2.2.13)
—h 0, m+n odd.
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Pictures of zero- and first-order plate resultants are given in [13]. They
represent extensional and shear forces, and bending and twisting
moments, etc.
2.2.4 Equations of motion and charge

We use the variational formulation in Equation (1.2.26) to derive the
plate equations of motion and charge. For convenience we introduce a
convention in which subscripts @ and b assume 1 and 2 only but not 3.

Let A be a two-dimensional area in the x,-x, plane with a boundary curve
C. Then Equation (1.2.26) can be written as

&= dtj dA[" a1, + o, - pi ou, + T, 56,
"'_[ dr J. dAJ. dxs[(Da,a‘Pe)5¢+D3,35¢]
L, dt | dl]’ dxy(Tn, —1,)ou,

- " dr ICD dl L, dx;(D,n, + G,)o¢,

(2.2.14)

where Cr has prescribed traction and Cp has prescribed surface charge.
Substituting Equation (2.2.2) into Equation (2.2.14), with integration by
parts with respect to x; and time, we obtain

an:Z f‘ dt L [T;"g nIg™D + FO - pZanug'”J&l(")dA
+Z j dt | (DS -nD{"™ + D Jspad
(2.2.15)
-y j' dt | (15"n, ~7™)eudl

-y F ai| (Dn, v+l
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where the body and surface loads of various orders are defined by
F(n) — nT A h n
T =x5T5,1, + _hdj'x3dx3,
(n) n h h n
D™ =[xD,)", - j_h pxudx,, (2.2.16)
ORI K = _ " = »
;"= _htjx3dx3, o, = J._haex3dx3.

For independent variations of su’ and 8¢, we obtain
Y :

a4 J mn=j

TS —nTT D+ F = p> B, i in 4,
m

D& —nD{" + D™ =0 in 4,
Tn, =1 on Cr,

DPn, =-" on Cp.

e

(2.2.17)

We note that electrodes in fact impose constraints on ¢ [18]. This

will be discussed in the next section.

In addition to power series expansions, it was pointed out in [13] that
trigonometric series could also be used. Two-dimensional equations
obtained from trigonometric expansions were given in [19-21]. More
references on various expansions can be found in a review article [22]. In
this book we mainly focus on power series expansions. We note that the
following polynomial expansion of the electric potential [23]:

6= 09 +x,00 + (2 = )PP + x,6D +--) (2.2.18)

has an important feature, i.e., only the first two terms do not vanish at
x, =+h. Therefore only ¢© and ¢ are responsible for the voltage

across the plate thickness. Then in the plate equations of electrostatics
only the zero- and first-order equations have surface charge terms. These
will make it convenient for an electroded plate, especially for higher
order equations.
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2.3 Zero-Order Theory for Extension

In this section we develop equations for extensional motions of thin
plates. The propagation of extensional and face-shear waves is examined
and compared with the three-dimensional solutions so that the range of
applicability of the plate equations can be established. The equations are
specialized to plates of polarized ceramics. As an example, the equations
are used to study radial vibrations of a circular ceramic disk.

2.3.1 Equations for zero-order theory

By a zero-order theory we mean a theory for extensional motions of
a plate with #(® and u§°> as the major displacements. For the electrical

behavior of the plate we are interested in what is governed by ¢ and

¢V . The approximate displacement and potential fields are

u = u® + x,ul,
© 0 (23.1)
PP +x30.

Although we are mainly interested in #{” and #{, we have included a
few other displacement components in Equation (2.3.1). Among these
additional displacements, " represents the thickness stretch or
contraction accompanying extension due to Poisson’s effect, and must be
included. #{” describes flexure. u{"” and u{" represent thickness-shear.

From Equation (2.2.5) it can be seen that ugo) together with 2" and u{"

contribute to thickness-shear deformations S and S{”, which may

couple to extension due to anisotropy and should be allowed. The two-
dimensional plate equations we will obtain are for the extensional

displacements #” and #{" . Other displacements will be eliminated

through a stress relaxation procedure. Within the approximation in
Equation (2.3.1), the strains and electric fields in Equations (2.2.5),
(2.2.8) and (2.2.9) become:

0 0 0 0 0 1
SO =, SO =ul, SO =ul),

(2.3.2)
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42 Mechanics of Piezoelectric Structures
0 0 0 0 0 1
EQ =—¢0, EP=-¢9, EP=-40, (2.3.3)

EV = —¢,(11), E) = _¢’(21), ED =0, 2.3.49)

Higher order strains S ;1) are neglected.
From Equation (2.2.17),, forj =1, 2 and »n =0, we obtain
T, + F® =2hpiil”, a,b=12, (2.3.5)

where we have truncated the right hand side by keeping the By, term only
in the summation.

For the electrostatic equations we discuss several cases below. In
the theory of piezoelectricity the electric potential is at most a function of
time on an electrode. For example, if both the top and bottom surfaces of
the plate are electroded, we can write

¢= Vl(t)a x3 = h’

(2.3.6)
¢ = VZ(t)’ x3 = —h‘
Since
¢= ¢ +x,00, (2.3.7)
we have
O+ hgM =V (1),
¢ ) 10)] 238)

¢ —ng? =1, (1).

Equation (2.3.8) imposes constraints in the variational formulation in
Equation (2.2.15). These constraints can be systematically treated by the
method of Lagrange multipliers [18]. In our case with ¢® and ¢ only,

the constraints are relatively simple so we will proceed in the manner of
[24,25]. We discuss four possibilities separately.

(i) An unelectroded plate
In this case 6¢@ and 64V are independent functions of x,, x, and ¢.
We have the following two-dimensional equations of electrostatics:
DY + D =0,

(2.3.9)
DY - D + DV =0,
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(ii) A symmetrically electroded plate

In this case x; =+h are both electroded. ¢ and ¢ are directly
determined by Equation (2.3.8) as functions of time. No differential
equations for ¢ and ¢ result from Equation (2.2.15) and no

differential equations are needed for determining ¢ and ¢ .

(iii) A plate with the upper surface electroded
From Equation (2.3.8),

369 + hop® = 0. (2.3.10)
Substituting Equation (2.3.10) into Equation (2.2.15) we obtain
-~ (D) + DY+ DY - DI + DV =0, (23.11)

,a

Since ¢ and ¢V are related by (2.3.8);, we only need one differential

equation (2.3.11) to determine one of them. When the upper surface is
electroded, D,(h) is unknown. Equation (2.3.11) can also be obtained by

eliminating D;(h) between Equations (2.3.9); and (2.3.9),. This

procedure can also be used to treat prescribed displacement on a major
surface of a plate when using two-dimensional equations [26].

(iv) A plate with the lower surface electroded
From Equation (2.3.8),
569 —hsp® =0, (2.3.12)
Substituting Equation (2.3.12) into Equation (2.2.15) we obtain
D) + DY+ D), - DY + DV =0, (2.3.13)

which is equivalent to eliminating D;(—/) between Equations (2.3.9)
and (2.3.9),.
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For plate constitutive relations, we truncate Equation (2.2.12) by
keeping the By and Bj; terms only in the summation:

0 0 0
Ty( )= 2h(cijlel£l) - ekijEIE )),

DO =2h(e; 8P +£,EM), (2.3.14)
20
M _ [0))
DY ==-5,E,

where S,g-l) have been neglected. Since S,-E.O) contains #” and u®,

Equations (2.3.14) are not yet ready to be used for a theory of extension.
To obtain the proper constitutive relations for extension we proceed as
follows [13]. Since the plate is assumed to be very thin and for extension
the dominating stress components are Ty;, T», and Tj,, we take the
following to be approximately true:

T =0. (2.3.15)

Equation (2.3.15) is called stress relaxation. According to the compact
matrix notation, with the range of p, ¢ as 1, 2, ... and 6, Equation
(2.3.15) can be written as

TV =0, g=345. (2.3.16)

For convenience we introduce another index convention in which
subscripts #, v, w take the values 3, 4, and 5 while subscripts » and s take
the remaining values 1, 2, and 6. Then Equation (2.3.14), , can be written
as

Tr(O) = 2h(crsS§0) + cmS:EO) - ekrEl(cO) )9

T = 2h(c, S +¢,,8,” ~ e E) =0, (23.17)
D =2h(e, S + e, 5 + £,ED),

where Equation (2.3.16) has been used. From Equations (2.3.17), we
have

SO = _¢e, SO 1 cle, ED. (2.3.18)

s

www.iran-mavad.com
2 ge (padige 5 Olsadils g e



Piezoelectric Plates 45

Substitution of Equation (2.3.18) into Equations (2.3.17), 3 gives
T(O) =2h(y SO _ E(O))

(2.3.19)
0 . 0 )
D7 =2h(y,,S; " +&,E}),
where the material constants relaxed for thin plates are
Ves =Cps— Crvc;nlicwsi r,s =126,
Vis = €ks — ekwc;lcvss v,w =345, (2.3.20)

Sy =&y t €l e J.k=123.
In summary, in the case of an unelectroded plate, we have obtained
T, + F® =2hpiil¥, a,b=12,
D+ DO =y,
DY —D® + O o,
TO =2h(y, SO -y, ED), r,5=12,6,

DO =2h(y, SO + ¢, ED), (2.3.21)
20

@ _ M

D =n &;EV,

SO =uf, SO =u), SO =u +ull),

0 0 0 0 0 i
1 1 1 1 1
E1()= —(15,(1), Eg)—-— —¢,(2), Eg)—O.

With successive substitutions from Equations (2.3.21)4.9, Equations
(2.3.21)y; can be written as four equations for u(°) , u§°> s ¢(°) and ¢(1).
At the boundary of a plate with an in-plane unit exterior normal n and an
in-plane unit tangent s (see Figure 2.2.1), we may prescribe

19 o W 1O or u®,

n 2

D,(,O) or ¢(°), D,(,l) or ¢(1). (23.22)

When electrodes are present the differential equations are fewer, and so
are the boundary conditions.
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We note that in Equation (2.3.21) only S§°) or u1(0) and ugo) are

involved. The other three strain components S,ﬁo) (u=3,4,5) are due to
Poisson’s effect for couplings among extensions in different directions,
and couplings between extensions and shears in anisotropic materials.

S© and the related displacement components u” and u” can be

determined approximately from the stress relaxation condition in
Equation (2.3.18) once the solution to Equation (2.3.21) has been
obtained.

Compared to Poisson’s effect for couplings among extensions in
different directions, couplings between extensions and shears in
anisotropic materials are usually weaker and do not even exist in certain
crystal classes. If couplings between extensions and shears are neglected
as an approximation, a simpler stress relaxation can be performed. From
Equation (2.3.14),, by setting i =j =3, we require

T3(30) = 2h(c33k1S1$?) - ek33El$0)) =0. (2.3.23)
This implies the following expression for S{J:

1

S§(3)) == (0331(151((?) - 03333S§(3)) - ek33El(c0)) . (2.3.24)

C3333

In Equation (2.3.24), S has been eliminated on the right hand side

because when i = j =3, the two terms containing S{3’ cancel with each
other. From Equation (2.3.24) the thickness expansion or contraction
accompanying the extension of the plate due to Poisson’s effect can be
found if interested. Substituting Equation (2.3.24) back into Equations
(2.3.14), 5, we obtain the following constitutive relations relaxed for thin
plates:

0 = o = @
]-;j( )= 2h(cg'k1S1$1) - ekijEI(c )),

© @) | = () (2.3.25)
D7 =2h(ey Sy’ +E;E;),
where the relaxed material constants are defined by
Eijkl = Ciyw — Cy33C33u ! €33335
€uj = €y — €33Ca3 / C3333s (2.3.26)

£; =&, +€;33€;33/ C3333.
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We note that the right hand sides of Equation (2.3.25) do not contain
859 and T =0 is automatically satisfied by Equation (2.3.25). When

using Equation (2.3.25) for extension, S and S{ are taken to be zero.

The structures of the ¢, and e,, matrices are

¢y 6y 0 ¢4 G5 G
Cn Cn 0 ¢y C Cy
0O 0 0 0 o0 O
[€pe]= (2.3.27)
Pq - — — - — s
€y Cp 0 Cy Cps Cy
€1 € 0 &5 G55 Cs
Co Co 0 Cou Cos Ces
e e, 0 &, &5 e
[eg]=|en e 0 & e ey (2.3.28)
ey & 0 ey e 336J

2.3.2 Extensional and face-shear waves

To examine the basic behavior of the two-dimensional equations
obtained, consider the propagation of the following extensional wave in a
plate with traction-free surfaces which are electroded and the electrodes
are shorted:

ul(o) =expi(&x, — o), ugo) =0,

49 =0, 40 =0, (2.3.29)
In this case Equation (2.3.21) reduces to
rustn = Pk (2.3.30)

Substitution of Equation (2.3.29) into Equation (2.3.30), we obtain the
dispersion relation of the wave as

w=_|1L £ (2.3.31)
P
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Similarly, if we consider the propagation of the following wave:
ul(o) =0, u® =expi(&, —at),

40 =0, 40 =0, (2.3.32)

which is called a face-shear wave, Equation (2.3.21) reduces to

Vessh = piis”, (2.3.33)

and the corresponding dispersion relation is

w= ‘/E £. (2.3.34)
f2,

We plot the dispersion relations in Equations (2.3.31) and (2.3.34)
qualitatively in Figure 2.3.1. Face-shear waves usually have a lower
wave speed (slope) than extensional waves.

AOD .
Extension

Face-shear

4

b
>

Figure 2.3.1. Dispersion relations of extensional and face-shear
waves.

We note that the exact dispersion relations of extensional and face-shear
waves in Figure 2.1.4 are curved, representing dispersive waves. The
approximate dispersion relations in Figure 2.3.1 are straight lines for
nondispersive waves. These straight lines correspond to the tangents of
the corresponding curves in Figure 2.1.4 at the origin where the
frequency is low and the wave number is small. Therefore the
approximate two-dimensional equations we have obtained are low
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frequency, long wave approximations of the three-dimensional theory.
They are valid when kh/27 << 1, or the wave length is much larger than
the plate thickness. This gives a dynamic criterion of whether a plate is
thin or not. It is relative to the wave length we are considering.

2.3.3 Equations for ceramic plates

We consider two cases of ceramic plates with thickness and in-plane
poling.

2.3.3.1 Thickness poling

First consider a ceramic plate with thickness poling (see Figure
23.2).

X3

X1

P1‘ 0\ 2h e >

Figure 2.3.2. A ceramic plate with thickness poling.

The material tensors cy, , e, and 6‘5 are given by the matrices in

Equation (2.1.37). For these materials there is no coupling between
extension and shear. The stress relaxation in Equation (2.3.15) yields the
following results:

cfi ¢, 0 0 0 0
[7rs]= clpZ clpl 0 ] [l//ks]= 0 0 0 5
0 0 c66 eﬁ ef, 0
- z (2.3.35)
g 0
l6yl=| 0 &) 0| rs=126, kj=123
0 0 &b
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where

cfy =cfi — (i) Ity = s /I(s8)* —(s5)71,

¢t =5'12 (ci3)? legy = 512 /[(S“) (Slb; )’1,

Cos = Cos =1/8g5 = (ch —ch)/2, (2336)
el =e; —esscy /ey = dyy I(sy) +515),
eh =& +ex/ck,

efy =63, + ey /¢y = £43 — 2dy el

c? . el and g’ are common notations for these plate material constants
pq> “ig ]

[3] which clearly indicate that the constants are for a plate. The
constitutive relations then take the following form:

0 0 0 0

Tl(l) = 2h(c“u( ) +c12u§2) 331E§ ))

T =2h(chu +cfiul’) —ef ES), (2.3.37)
0 0 0

Tl( ) = =2hcg (ul( 2) + “g 1)),

D =2hef ED,

(2.3.38)
D =2h(eful) + efE),
0 =2 g0 2.3.39
D, “‘Eh 511¢,a . (2.3.39)
Substitution of the above into the equations of motion and charge gives:
1
0 0 1 0 0
cllul(l)l +066u1(2)2 +(cfy +666)u2 2 +e31¢() 2h FO = piif®,
X (2.3.40)
0 0 0 1 0 0
(ch +066)“1(,1)2 +066”§,1)1 +clp1u§ ) +e3’]¢,(2) h —F = pii?,
g“¢(0) D(O) 0,
(2.3.41)

-gl,¢<‘>+3h 250 —3h e31u(°)+2—23—D“)=0.
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The stress relaxation in Equation (2.3.23) yields:

ch
chn
_ 0

C =
[y 0
0
0
0
[g,1=| 0
e3)
& 0
[Eul=| 0 &,
0 0
2.3.3.2 In-plane poling

Piezoelectric Plates S1
¢chb 0 0 0 0

¢ 0 0 0 0

0 0 0 0 0 , 2.3.42)
0 0cy, O 0

0 0 0 ¢4 O

0 0 0 0 c4

0 0 0 e 0

0 0 ¢, 0 O0f (2.3.43)
e, 0 0 0 0

0

01 &,=¢’=¢-di/sE.  (23.44)
817

33

Next consider a ceramic plate with in-plane poling along the x;
direction (see Figure 2.3.3).

X3

2h

X1

Figure 2.3.3. A ceramic plate with in-plane poling.

In this case the material matrices can be obtained by tensor
transformation or reordering rows and columns of the matrices in
Equation (2.1.37) properly, with the result [9]:
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€33 €3 ¢3 O
¢z ¢y ¢ O
€3 ¢y ¢y 0
0 0 0 c4
0 0 0 0 cy
06 0 0 0 0 ¢

o O O O
o O O O O

e € €3 0 0 0 |(&; O O
0 0 0 0 0 e5(,/]0 & 0 (2.3.45)
0 0 0 0 ¢ O 0 0 ¢

where the elements of the matrices have the same meaning as those in
Equation (2.1.37). For example, c3; is always the stiffness in the poling
direction. The indices of the elements of the matrices in Equation
(2.1.37) represent the positions of the elements in the matrices, but the
indices of the elements of the matrices in Equation (2.1.45) do not. The
stress relaxation in Equation (2.3.15) yields the following results:

i Yz O Yu ¥ O
ul={7r2 » 0} [p,l=| 0 0 es
| 0 0 ¢y 0 0 0
- (2.3.46)
¢yu O 0
[cyl=| 0 & 0| r.s=126, k,j =123,
i 0 0 ¢35
where
4% =Cf3"(‘71€)2 /ClEls Y2 =c£"clb;c£/clE1=
Yo =cli =)’ lefs ey =chy =15y, (2.3.47)

E E _ E, E
W) =es —eyCi3/Cy, Wiy =ey —eycp /o,

S 2 E _ .8 _ S 2
Su=éntenl/cy, E1=6), Sn=&ntes/cy.
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The constitutive relations then take the following form:
L = 2h(}’“u1 1t }’12u(o) v ED),
Ty = 2}’(7’121‘11 + }’22” —yRE),
Tl(zo =2h[cy, (”(0) + ug,)l)) - elsEgo) I

D(O) = 2h['//11” P "“/’12”(0) +§11E(0)]
D® = 2He, 9 +u®) + £, EL],
D =2h¢ B,

DO = - E B end,

pw=_Z h3 109

53

(2.3.48)

(2.3.49)

(2.3.50)

Substitution of the above into the equations of motion and charge gives:

) 0) 0)
Yi¥in +Caly o +(¥ip +Chq U5 5,

1 .
+ ‘/’11¢(0) + els¢(0) h Fl(o) = P”1(O),

0) 0) (0)
(P12 FCa Uiy +Cagtinin 7 0U0 0

1 .
+(e5 +yy, )¢(O) Y Fz(o) = pu§0),

0
“§11¢,(11 511¢( )

1 o
+l//”u1 “ +el5u1 22 +{yp +e15)u2]2 2—};D( ) =0,

3

—833¢,(11) _511¢,(22) +3h é'33¢() +—3—D() =0.
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The stress relaxation in Equation (2.3.23) yields:

&, & 0 0 0 0
&y € 0 0 0 0
_ 0 0 0 0 0 0
c.1= , 2.3.53
(5] 0 0 0 ¢ 0O O ( )
0 0 0 0 ¢, O
0 0 0 0 0 c

[€,]=/0 0 00 0 eyl (2.3.54)

g, 0 0
[Eyl=| 0 &, O, (2.3.55)
0 0 ¢y

where

—_ _ 2 p— =

ey =Cy—C3ley, €y =cy—cpos/on,

- 2 -

Cp=cnu—Cnl/en, & =eyx—excyley, (2.3.56)

- - _ .5 2
€, =ey —eycp /ey, &y =&y tey/cy.

2.3.4 Radial vibration of a circular ceramic disk

Consider a circular disk of a piezoelectric ceramic poled in
the thickness direction positioned in a coordinate system as shown in
Figure 2.3.4. The faces of the disk are traction-free and are completely
coated with electrodes. A voltage Vexp(iwt) is applied across the
electrodes. We consider axi-symmetric radial vibrations [3].
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sz

X1

Figure 2.3.4. A circular ceramic plate with thickness poling.

The plate electric potentials for the applied voltage are
¢©@ =0, ¢V = EVZexp(ia)t). (2.3.57)

Introduce the following vector notation:
©) _ 0 (0);
u =y Uk w0y,
o (2.3.58)

Then Equation (2.3.40) can be written into coordinate independent form
as

(¢} = b))V +(cf +c5)RV(V -u®)

(2.3.59)
+2hef, VPO +[Ty e, + Type, I, = 2phi®.
In polar coordinates
(a0 10u )
"ot r or r?’ (2.3.60)
_0%u® 10u®  u® o

[V(V-u®)], = +

or’ r Or rr
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Then for axi-symmetric motions Equation (2.3.59) becomes

,{a%:f") Llow® uﬁ"’J

(0
e = il (23.61)

The relevant resultants are
T =2h(chiSY +ch S — e E)
=2h(cful) +cfu® Ir)+ eV expiot), (2.3.62)
D9 =2hel, (u(o) +u® /1) - eBV exp(iot).

For steady state motions, Equation (2.3.61) reduces to

2© “gor) 2 (0)
Uy +—— +| & - =0, (2.3.63)
where
2 o’ Py2 P
6 = ‘W, (V ) =y /p . (2364)

Equation (2.3.63) can be written as Bessel’s equation of order one. For a
solid disk, the motion at the origin is zero and the general solution is

u® = BJ (£ r)exp(iat), (2.3.65)

where J; is the first kind Bessel function of the first order. Equation
(2.3.65) is subject to the boundary condition

T® =0, r=a, (2.3.66)
hence Equation (2.3.66) requires that
cl’;B-ali +c1‘;Bi =—ef v , (2.3.67)
rea a 2h

where, for convenience, the argument of the Bessel function is not
written. From Equation (2.3.67) B can be expressed in terms of V as
follows:

P
B=|0-on 2Dz )J s (23.68)
11
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where
M - Jo(x)_ﬂ’fl (2.3.69)
dx x
has been used and
o’ =cfy/ch, (2.3.70)

which may be interpreted as a planar Poisson’s ratio, since the material is
isotropic in a plane with a normal along x;. The total charge on the
electrode at the bottom of the plate is given by

1 a 1
- — DO gy~ — Do
0, = L Y D3;7’dA 27z.[) o D3V rdr . (2.3.71)

Substitution of Equation (2.3.65) into Equation (2.3.62), and then into
Equation (2.3.71) yields

Q, =2melaBJ, (¢ a) - nelVa® 1 2h. (2.3.72)

Hence we obtain for the current that flows to the resonator

1=@=ia{ 2k5)" Sy (£ a) —1} AT
dr (1-o?)J(a)-¢aly(Ea) 2h
where
2
gy =) 2.3,
(k3 SLl (23.74)

At mechanical resonance, the applied voltage can be zero, and from
Equation (2.3.67),
a/, Ji

2l yeril=g. (2.3.75)

dr|,_, a

Or, at the resonance frequency, the current goes to infinity. This
condition is determined by setting the square bracketed factor in the
denominator of Equation (2.3.68) equal to zero. The resulting equation is
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cao(6a) oo (2.3.76)
J1(§a)

which can be brought into the same form as (2.3.75). The antiresonance
frequency results when the current goes to zero. The resulting equation is

saly(5a)
Ji(5a)
The above results from plate equations are the same as the results in [3,9]

obtained by directly making approximations in the three-dimensional
equations.

=1-0” - 2(k%)>. (23.77)

2.4 First-Order Theory

In this section the first-order terms and equations are examined. A
set of equations governing extension and flexure with shear deformations
are obtained. These equations are probably the most widely used plate
equations. The equations are specialized to the cases of ceramic and
quartz plates.

2.4.1 Coupled extension, flexure and thickness-shear

By a first-order theory we mean a theory for coupled extensional
(1, a =1, 2), flexural (ugo)) and thickness-shear (") motions of a
plate. For the electrical behavior of the plate we are interested in what is
governed by ¢® and ¢®. The approximate displacement and potential
fields are

u, =2 u® +x,u® + x2u®,

§= 9O +x,00.
Although we are mainly interested in #” and u(l) we have included a
few additional displacement components in Equation (2.4.1). Among

2.4.1)

(©

these additional displacements, " and u{? represent the thickness

stretch or contraction accompanying extension and flexure due to

Poisson’s effect, and must be included. From Equation (2.2.6) it can be

2

seen that u{" together with u® and u{” contribute to symmetric
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thickness-shear deformations S{” and §{”, which may couple to the

other first-order strains due to anisotropy and should be allowed. The

two-dimensional plate equations we will obtain are for #, u{®

u®" only. Other displacements will be eliminated through stress

relaxation procedures. Within the approximation in Equation (2.4.1), the
strains and electric fields in Equations (2.2.5), (2.2.6), (2.2.8) and (2.2.9)
become:

and

0 0 0 4] 0 1
SO =u?, SO =, SO =ul, 042
SO =ul +ul, SO =uff +ul, SO =u? +uf?,
SO =u®), SO =uf), SO =2@, (243
SP =ul) +2uP, SO =uf) +24P, SL =ul) +uf),
0 0 0 0 0 1
E® =0, E® =—¢D, E® =-¢0, (2.4.4)
EP =—¢", EP =—49, EP=0. (2.4.5)

Higher order strains S;z) are neglected. From Equation (2.2.17),, for j =
1,2,3and n=0, and forj=1, 2 and » = 1, we obtain

T + FO = 2hpi®, a,b=12,
TS, + F® = 2hpii", (2.4.6)

2n° .

9, -1 + 50 =2 i),
where we have truncated the right hand side by keeping the By term only
in the summation in the zero-order equations, and the Bj; term only in
the summation in the first-order equations. Equation (2.4.6), is for
extension, Equation (2.4.6), is for flexure, and Equation (2.4.6); is for
thickness-shear. The electrostatic equations are the same as those in the
zero-order theory in the previous section. We have, for an unelectroded
plate:
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DO +DY =0,
DY — DO 1 p _o, (2.4.7)

for a symmetrically electroded plate:

6O +hg® =V, (1),
2.4.8
@ —hg® =7, (), @48

for a plate electroded at the upper surface:

¢ +hg® =V,(),
_h(D(O) +D(0))+D(1) D_,(,O) + DO = 0, 249

and for a plate electroded at the lower surface:
(DY +D®)+ DY - D + DO =0,
# —hg® =V, (0.

For plate constitutive relations, we truncate Equation (2.2.12) by
keeping the By, and B;; terms only in the summation:

(2.4.10)

T =2h(c,, S — e, ED),
e ok (2.4.11)

D =2h(e,;, S +e,E),
20
Tyo) =‘—3_(cyk1S13) - kyEIEI))
(24.12)
DY = (e,ij(l) +&,EM),

where §; ) have been neglected. Since S,-ﬁ.o) contains #{" and S(')

contains ugl) and ufz), Equations (2.4.11) and (2.4.12) are not yet ready
to be used for a theory of extension, flexure and thickness-shear. To
obtain the proper constitutive relations we proceed as follows [13,17].
For the zero-order constitutive relations we take the following stress
relaxation to be approximately true:

T =0. (2.4.13)
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Then, in the manner of the derivation of Equations (2.3.23) through
(2.3.26), we obtain the relaxed zero-order constitutive relations:

T =2h(cy Sy - ey EN),
D® =2hn(e,, S +5,ED),

y=j

(2.4.14)

where

Ciw = Cywr — Cyj33C331 | C33335
€rij = €ryj ~€r33C33y / €33335 (2.4.15)

£y =&y +€33€33/Capy.

Since we use a linear function x,u " as an approximation for the

fundamental thickness-shear mode in this first-order theory, which is
approximate in dynamic problems where the fundamental thickness-
shear displacement has a sinusoidal variation through the plate thickness,
following [13,17], we introduce two shear correction factors x; and x; as
follows. First a two-dimensional electric enthalpy can be defined based
on Equation (2.4.14). Then we replace the following zero-order strains in
the two-dimensional enthalpy function:

SO 5 x50, 89 k89 (2.4.16)
This modifies ¢, and e, into c;, and & in the zero-order
constitutive relations. Then Equation (2.4.14) takes the following form:
TV =2n@, S -2, E),

. . . 2.4.17)
DO =2n(e;, S +&,E™).
The structures of the ¢ ;,q and Ei'q matrices are
‘n G 0 K KiCis Cis
Can cn 0 K,Cy K1Cas €26
0 0 0 0 0 0
[c,y]= _ _ ~ |, (2.4.18)
KyCy KyCyp 0 KyKyChp KiKyChs KpCye
KiCs) KiCs; 0 KKk,Csy  KiK(Css  KiCsg
Ce1 o 0 Kx,Cq KCgs Ces
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e, ey, 0 ke, K&; &g
N _ .
ey 1=|€1 €n 0 K&, K85 ex|. (2.4.19)

ey ey 0 K&y Kés e

The two correction factors should be determined by requiring the two
fundamental thickness-shear resonant frequencies obtained from the two-
dimensional plate equations to be equal to the corresponding exact
frequencies predicted by the three-dimensional equations. With shear
correction factors thus determined, the two-dimensional plate equations
and the exact three-dimensional equations yield the same frequencies for
a particular motion, i.e., the thickness-shear vibration of a plate in the
two fundamental thickness-shear modes. This is particularly important to
the analysis of piezoelectric devices operating with thickness-shear
modes.
For the first-order constitutive relations, we set [13,17]

o _ -
I,” =0, g=345. (2.4.20)
Then, similar to the derivation of Equations (2.3.17) through (2.3.20), we

obtain the relaxed first-order constitutive relations:

r

2n
T = T(yrsss(l) —'//krEJEI)),

(2.4.21)
o _ 2K o o
Di ZT(WisSs +§yE/ )’
where
Vs =Cre —cwc;jcm, r,s =12,6,
Wi = € —€yCaCrsr VW =3,4,5, (2.4.22)

1 ,
Sy = €y T ECrC Jk=123.
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In summary, in the case of an unelectroded plate, we have obtained

T +FO =2hpiil”, a,b=12,

79, + FO = 2h0i®,

3
TO IO 4 FO = 2;’ i), (2.4.23)

ai
DO +D =y,
DY - DY + DY =0,
0 0
T = 2h(@u Sy ~ Ty EL),
D® =2h(e, S +&,E™),

)
2’ 4.
Tr(l) = 3 (7rsS§1) _‘//krElsl) )a r,§ = 1,2363 ( 2 4 24)
2
1 1 1
Dx() =T(WIJS3(‘) +é’ijE5'))’
0 0 0 0
SO =u, P =ugl,
SO =u® +ul, SO =u® +u®, SO =u® +ul?,
SO =uf), SP=ud), SO =ul)+ul), (2.4.25)

E]() — ¢,(1), E() —_ ¢,()’ E() _0.

With successive substitutions from Equations (2.4.24) and (2.4.25),
Equations (2.4.23) can be written as seven equations for ui(o), uf,l) , ¢©
and ¢V, At the boundary of a plate with an in-plane unit exterior normal

n and an in-plane unit tangent s (see Figure 2.2.1), we may prescribe

Tn(,?) or u,(,o), Tn(so) or (0), Tn(;)) or u§°)

7O or u®, TO or u0, (2.4.26)
DO or ¢©, DOV or ¢,

3
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When electrodes are present the differential equations are fewer, and so
are the boundary conditions. We note that Equations (2.4.23) through

(2.4.25) do not contain S(o) and SS) (w = 3, 4, 5), and the related

displacement components u(l) and u® . These strain and displacements

can be determined approximately from the stress relaxation conditions in
Equations (2.4.13) and (2.4.20) once the solution to Equation (2.4.23)
through (2.4.25) has been obtained.

2.4.2 Flexural and thickness-shear waves

To examine the basic behavior of the equations obtained, we study
the special case of an isotropic, elastic plate for which

aq, ¢ ¢, 0 0 0
g & ¢ 0 0 0

p ¢ o 0 0 0
=0 0 0 ¢, 0 of
0 0 0 0 e O (2.4.27)
0 0 0 0 0 cy
oy =A+2u,
c, =4,
u=(en =)/ 2,
le,1=0,

where A and u are Lame constants. In this case extension is not coupled
to flexure and thickness-shear. Consider coupled flexure u(o) (x,,t) and

thickness-shear in the x; direction u{"(x,,f). The relevant equations
reduce to
0 1 0
2hur’ (U}, +ugy) = 2hpu< )

o 1 (2.4.28)
Dul(,ll)l —2hux (”§ 1) +U 0y = Pul( ),
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where [13]

3
=i—E-2—, K=K =K, = . (2.4.29)
30-v7) V12
D is the bending stiffness of the plate. £ is Young’s modulus. v is

Poisson’s ratio. We look for simple wave solutions
O = 4 expi(&, —at

e Xpi(eH — ) 2.4.30)

uy = Ay expi(gx, —ax),

where A, and A4; are constants. Substitution of Equation (2.4.30) into
Equation (2.4.28) results in two linear equations for 4, and A4;. For
nontrivial solutions the determinant of the coefficient matrix of the linear
equations has to vanish. This yields the following equation that
determines the dispersion relations for coupled flexural and thickness-
shear waves:

30 -30Q% -3Q0%9, X - X Q% +9,X* =0, (2.4.31)

where
, mtou . 8 1 (2.4.32)
112 T .-

X is a dimensionless wave number. ) is a dimensionless frequency,
normalized by the exact fundamental thickness-shear frequency ..
There are two branches of dispersion relations. For short waves with a
small X, the asymptotic expressions of the two dispersion relations are

Q2 ;%X“, flexure, (2.4.33)
and
sz1+(}7u+—;—)X2, thickness-shear. (2.4.34)

The two dispersion curves are qualitatively shown in Figure 2.4.1. With
the correction factor the plate equations predict the exact cutoff
frequency at Q = 1.
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[

Figure 2.4.1. Dispersion curves for coupled flexural and thickness-shear
waves. Dotted lines: from plate equations. Solid lines: exact.

2.4.3 Reduction to classical flexure

For many applications in which the flexural motion is dominant, the
Kirchhoff classical theory of flexure without shear deformation is
sufficient.

2.4.3.1 Elimination of thickness-shear

To reduce the above first-order theory for flexure with shear
deformation to the classical theory of flexure, we take the plate

thickness-shear strains S to vanish [13], and then from Equation
(2.4.25)

0 =u® = SO =4O, (2.435)

3,a

Equation (2.4.35) enables us to eliminate #" in Equation (2.4.25).

Another approximation we need to make to obtain the classical theory is
to neglect the rotatory inertia p2h*/3 in Equation (2.4.23);. Then
Equation (2.4.23), takes the following form:

T, -I9 + KV =0, | (2.4.36)
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from which we can solve for 7. and substitute the result into Equation
(2.4.23); to obtain the equation for classical flexure

1 1 0 )
Ta(b,)ab + Fb(,b) + F3( ) = 2hpu§ ). (2.4.37)
In summary, the equations for extension and classical flexure are:

T + FO =200, a,b=12,

ab,a

0 0 (0
Ta(3,31 + F = 2hpiif?”,

D) + D9 =0,
D" - D» + DO =,

(2.4.38)

TO® =2n@E. SO -2 E?), r,s=126,
D =2h(e, S\ +§;E"),

Y =19, +FO, (2.4.39)

3
Tr(l) = 2:]: (}/rsS.Sl) _WkrEIEI) )a
2K
o 0 {1
Di - 3 (WisSs +§ijEj )s

SO =u®, SO =ul, SO =u+ul),

S =2,
(2.4.40)
0 0 0 0 0 1
E® =—4®, E® =4, EO =_¢O,
1 1 1 1 1
ED =40, D =49, EP =0

With successive substitutions from Equations (2.4.39) and (2.4.40),
Equations (2.4.38) can be written as five equations for ¥, ¢ and

#® . At the boundary of a plate with an in-plane unit exterior normal n
and an in-plane unit tangent s (see Figure 2.2.1), we may prescribe
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Tn(,?) or u® Tn(so) or u®

n 2 s o

T,,(;))+T(l) or ugo), Tn(,}) or u

ns,s u3,n .

(2.4.41)

2.4.3.2 Dispersion curves of flexural waves

The above procedure for reduction to classical flexure is more
readily seen in the special case of isotropic materials. We begin with the
following equations from Equation (2.4.28) for coupled flexure and
thickness-shear:

2hur® (W) +ul)) = 2hpii?,
(2.4.42)
1

3
Dl - 2 )+ ) = 2 ).
First we set the rotatory inertia to zero in (2.4.42),. This results in
Duffy —2hpuc* ) +uP)=0. (2.4.43)
The elimination of 2h(,uu§?l) + ul(l)) from Equations (2.4.43) and
(2.4.42), yields
Duf), =2hpiif” . (2.4.44)
Next we set the plate shear strain to zero
ulQ +u =0, (2.4.45)

with which we can express #" in terms of #{” in Equation (2.4.44)

~ Duy, =2hpiif”, (2.4.46)

which is the well-known equation for classical flexure. In Equation
(2.4.46), letting

u® = expi(&x, - x), (2.4.47)
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we obtain the dispersion relation for flexural waves as

o’ = -—D—g“, (2.4.48)
2hp
or
Q2 =%“—X4, (2.4.49)

which is exactly the asymptotic expression in Equation (2.4.33).
The dispersion curve determined by Equation (2.4.49) is plotted in
Figure 2.4.2 in a dotted line, with a qualitative comparison to the result
of Equation (2.4.31). It can be seen that the dispersion curve from the
classical theory for flexure, and the flexural branch of the dispersion
curves from the theory for coupled flexure and thickness-shear, agree for
short waves at low frequencies.

v

Figure 2.4.2. Dispersion curves for flexure. Dotted line: Classical
flexure. Solid line: Coupled flexure and thickness-shear.

2.4.4 Thickness-shear approximation
In vibrations of a finite plate, flexure and thickness-shear

deformations are usually coupled, whether the plate is isotropic or
anisotropic. In piezoelectric devices, thickness-shear vibrations are often
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used as the operating modes. These modes are dominated by thickness-
shear deformations, with a small coupling to flexure. There is a
procedure for eliminating the weak coupling to flexure from the
equations for coupled flexure and thickness-shear to obtain equations for
the dominating thickness-shear waves only. This procedure is called the
thickness-shear approximation [27], and is particularly useful in
analyzing piezoelectric devices. Thickness-shear approximation was
introduced in the analysis of quartz thickness-shear piezoelectric devices
[27]. The procedure can be well explained in the case of an isotropic
plate, which will be presented below. We begin with the equations for
coupled flexure and thickness-shear (Equation (2.4.28))

2hux® (usd) +uly) = 2hpils”,

1} (2.4.50)
Dul(}l) -2hux (ugo) +uy=""1 3 = piilV

Let
u) = 4 expi(&x, - a)t)
(0) = Ay expi(&x, —
Substituting Equation (2.4.51) into Equation (2.4.50),, we obtain

(2.4.51)

UK (—A,E7 + A)iE) = ~pa’ 45 . (2.4.52)

For long waves we drop the term quadratic in €. For frequencies close to
the lowest thickness-shear frequency @, we set

2
0 el ="—FE (2.4.53)
4h° p

in Equation (2.4.52). Then Equation (2.4.52) becomes

h2
Ay == A (2.4.54)

which is equivalent to the differential relation

h2
u) = ——3-u1(}1>. (2.4.55)
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Substituting Equation (2.4.55) into Equation (2.4.50), we arrive at
3 3
(D+% p* Y = 2hpx*u® = %pﬁ,“), (2.4.56)

which is an equation for the thickness-shear displacement # . In
Equation (2.4.56), letting

u® =expi(&, —wt), (2.4.57)

we obtain
2 n | -
Q =1+(711+§)X , (2.4.58)

which is exactly the asymptotic expression in Equation (2.4.34). The
dispersion curve determined by Equation (2.4.58) is plotted in Figure
2.43 in a dotted line, with a qualitative comparison to the result of
Equation (2.4.34). It can be seen that the dispersion relation of the
equation with the thickness-shear approximation and the thickness-shear
branch from the theory for coupled flexure and thickness-shear agree for
short waves with frequencies near Q = 1. Note that in Figure 2.4.3 we
have also included the case of imaginary wave numbers. The complex
branch shows that the thickness-shear approximation is good near Q = 1.
Its low frequency behavior is not accurate.

Im(@)  Re(©)

Figure 2.4.3. Dispersion curves for thickness-shear and flexure. The
dotted line represents the thickness-shear approximation. The solid line is
the coupled flexure and thickness-shear.
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2.4.5 Equations for ceramic plates

We consider two cases of ceramic plates with thickness and in-plane
poling, respectively.

2.4.5.1 Thickness poling

First consider a ceramic plate poled in the thickness direction (see
Figure 2.4.4).

X
A3

P T 2h N

Figure 2.4.4. A ceramic plate with thickness poling.

From the material matrices in Equations (2.3.35) and (2.3.42) through
(2.3.44), the constitutive relations take the following form:

0 - 0 =
Tl(l) = 2h(¢11”1(1 +‘312u§2) _931E§ ",
— 0
Tz(zo) = 2”(012”1(,1 +cu"z 3 “ele( Y (2.4.59)
0 0 0
1Y) = 2hcg ("1(,2) +uf )),

7O = 2h[xc, (@) +u) - ke sEQT, ( 2.4.60)
DY = 2hleys (us +ug )+ e, B3], (2:461)
DY =2h(e,ul) + e{ED), (2.4.62)
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2 —
Tl(l) = §h3(cllu(l) +Cuu§1,§ )
2 4 -
Ty = §h3 @) +2,u8%), (2.4.63)

2
- 3h3c“<u<l> i),

DY =-ZKehp?. (2.4.64)
Substitution of the above into the equations of motion and charge gives
the equations for extension:
- 0 0 — 0 - 1
cllul(,l)l + (—'66”1(,2)2 +(Cpp + s )ug,z)l + es1¢,(1 )

21h FO = i,

0 4= O (= ) 5 0 (2.4.65)
Costy 11 +Crithy 27 +(Crp +Ce6 )t 12 + €105
1
+ L EO = o,
h PU;
flexure:
1
(0 1 0 0 (0
K2y (D, +ul)) + xeysp ) + 2hF3() = pii{”, (2.4.66)
thickness-shear:
_ 1 1 — 1
5'11“1(,1)1 + 066"1( 2)2 +(Cp + o6 )ug,%l
-3h%? c44(u1(1) +u(°)) 3h_21<e15¢,(1°)
+ 2 FO i
3 2
2h (2.4.67)

M = ,0 = O]
Cesta i1 +Critsp +(Cy + Co6 )t 1

=3h7K ey () +ul)) - 3K ke 45
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and electrostatics:

0 0 1 1 o
"511¢,(aa) +Ke|5(u§,3a +”§,2;)+ED( ) =0,

(2.4.68)
—ehgl) + 3072 E5,40 —3h728,ul’) +§—Z—3—D(') =0.

The thickness-shear approximation of a ceramic plate is often used
for device modeling [28]. The weak flexural deformation accompanying
thickness-shear is eliminated as follows [28], which simplifies the
equations. We consider the case when there are no surface loads. This
means that the major surfaces of the plate are traction-free, unelectroded
and are without surface free charge. From Equations (2.4.66) and
(2.4.68),, we obtain, by eliminating ¢(°) s

2
K7 (Caq + 22w, +u®) = pii?¥ . (2.4.69)
&

3,aa ,a
11

Consider the following wave solution:

u§°) = A, expi(&,x, + wrt), (2.4.70)
u) = 4, expi(&,x, + o),

where A; are constants. Substitution of Equation (2.4.70) into Equation
(2.4.69) results in:

2
K2 Oy + YA L, + A,iE,) = —po’ 4y . (24.71)
11
We are interested in long waves with small wave numbers &,. The term
quadratic in &, in the above equation can be dropped. Also, since for long
thickness-shear waves the frequency @ is very close to the exact pure
thickness-shear frequency @, of an infinite plate, we make the following
substitution in Equation (2.4.71):

2
o~ o? =2 Cu (2.4.72)
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where @, is determined from Equation (2.4.67), by dropping all x; and

x; dependence as well as the surface load. The approximate version of
Equation (2.4.71) is then

2 2
4, =—h?(1+ 4

Ji& A, (2.4.73)
Caaén

which is equivalent to the differential relation
u® = ——(1 + ki )ul, (2.4.74)

where we have denoted

2
s

k= (2.4.75)

Casbn

Substituting Equation (2.4.74) into Equations (2.4.67) and (2.4.68),,
neglecting the third derivatives of u," under the long wave
approximation, we obtain the following equations under the thickness-
shear approximation:

1 2 (1l -2 0 1
Criu + ot + s, — potul’ —3h xe,sp” = pii”,
1 1 2, -2 0 1
c66u§{1 +Cuug)22 "'012”1(1)2 pazus? —3h ’@15‘15,(2) = pii’, (2.4.76)
1
—€]l¢, +K915u() _0,
where
s _ = 2 2
¢ =C+x e, (1+k5),
1.1 _11 44 , 15) , (2477)
Crp =Cip +Cgs +K°Cyy (1 + Ky
Under the thickness-shear approximation, we approximately have
0 2 1 0
Ty = 2h(x’cyul’ — ke E),

(2.4.78)
DY = 2h(xe,sul’ +£,E).

2.4.5.2 In-plane poling

Next consider the case of a ceramic plate with in-plane poling in the
x; direction (see Figure 2.4.5).
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X3

1\

P —> 2h —

X1

Figure 2.4.5. A ceramic plate with in-plane poling.

From the material matrices in Equations (2.3.53) through (2.3.55) and
(2.3.46), the constitutive relations take the following form:

P = 2h(51”1((;) +Elzu§2) -, E"),

T = 2h(E,uy +czz“(0) -2, E),

Ty =2hic;ce (us +ul), (2.4.79)
T = 2K ey (us)) +u”) - Kkye5 B3’ ],

T(o) =2h[cy, (“(0) (0)) elsE(O)],

D = 2h(e”u” + euu(o) + &, E"),
DY = 2hes 2 448+ 6, EP) 2430
D® = 2h[lc1e15(u(°) +u®)+ £, E{"],

2K
T](l) = (},“S(l) + 712S(l) ‘//uEl(l) )
<»_2h O _y O 2.4.81
Ty, (712 +7225' ~ynE), (2.4.81)
Tl(21) = _"(C 4S(l) ‘elsES))a
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1 1 1 1
Dl() =‘—‘('//11‘5'() +V’12S§2) +§11E1( )),
28
D(l) = (eISS(l) +511E§]))

D = T:ﬁw

77

(2.4.82)

Substitution of the above into the equations of motion and charge gives

the equations of extension:

~ (0 © , = 0
5'11”1,1)1 +Cyqlhy 5 +(Cpy +Cyy )ug,2)1
1
2h

= (0) 0 = ,,(0)
(€1 tegdupy +Coqty gy +Cpths 5y

;(0)

_ 0 0
+eu¢,(1 +e‘5¢( ) F( ) = pily

1
+(e5 + e, )¢(O) o F(o) P”go)’

flexure:

2 0 1 0 0
Ky c44(”§,1)1 ())+’C2066(“§ 2)2 +U;32

1
1 0 0
+’f1315¢,(1) +EF3( )= P”g ),

thickness-shear:
a
7’11“1 11 + 044"1 22 +(p + 044)1‘2 2 T ¥ndii 4
+e505) —3h [0 ey UY) +u) + k16,561
3 a 1
+22F 2RO i,
1
(72 +cu )ul 2t c44"2 + 722”2 »t(es+ ‘/’12)¢( )

2 2 0, 3 .
=37 K5 cg (U +u)) +— e ~F = pilf),
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and electrostatics:
‘?11”1(,(;)1 + e15u1(02)2 +(ey, +es )ug(,)l)Z
_Ell¢,§1 6'11¢(0) hD(O) =0,
'//11”1(,11)1 +elSul,22 +(Yy tes )ug,lz 411¢(1) 511¢(l)

=3h7 [Kyeys (uSy +ul)— e, ]+ 223 DY — o,

2.4.6 Shear correction factors for ceramics plates

(2.4.86)

In order to determine the shear correction factors, we solve the same
problem of thickness-shear vibrations of a ceramic plate by two
procedures using the three-dimensional equations and the two-
dimensional equations, respectively, and match the results. We consider
two cases of ceramic plates with thickness and in-plane poling,

respectively.

2.4.6.1 Thickness poling

First consider the case of an infinite, unelectroded plate with the
electric polarization in the thickness direction x; (see Figure 2.4.6).

X3

ﬂ\

P T 2h |

X1

Figure 2.4.6. A ceramic plate with thickness poling.

The plate has traction-free and vanishing normal electric displacement
boundary conditions at x; = +h. The two edges at x; = teo are electrically
shorted. As an exercise, we use the constitutive relations in terms of the

following matrices:
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=z

N

=

=

W

o
o o o

0 0 0 0 ds 0)(g, 0 0
0 0 0 ds 0 0[,|]0o &, 0], (2.4.87)
dyy dy, dy 0 0 0/ 0 0 e

where s¢6 = 2(511-512 ). We look for solutions in the following form:
U =uy(x5,1), U, =u;=0, ¢=0, (2.4.88)
which lead to
$,=8,=8,=8,=8=0, Ss=up;,
E =E,=E; =0,
I,=T,=T,=T,=T,=0, T =Lu1,3, (2.4.89)

Sa4

d
Saq

The equation and boundary conditions to be satisfied are

1
— U3 = pi, —h<x;<h,

44 (2.4.90)

IS] ="1—u1’3 = 0, JC3 = ih,

44

which allow the following simple solution for the lowest thickness-shear
mode

7[2

— 2.4.91
4h2ps44 ( )

. TXy . 2 2
u = sm—zexp(zwt), o =w, =
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Note that the solution is not pure elastic because of the following
nontrivial electric displacement component:

d d

D =g 245 7 0™ exniicr), (2.4.92)

Sa4 S44 2C 2c
which is responsible for the current flowing through the shorted edges at
x1 = oo, To determine the correction factor k, we also consider the above
thickness-shear mode from the plate theory. From Equation (2.4.67), we
have, with 9, =9, =0, ¢© =0, and ¢ = 0,

2
~ 3K 4 = i, (2.4.93)
hs4,
which implies that
2
w? = 3’2‘ . (2.4.94)
Phs4,

Comparing the frequencies in Equations (2.4.91) and (2.4.94), we
determine the correction factor as

2
2 T

K*=—0.
12

The above solution is for the case when the two edges of the plate at x; =
+eo are shorted. If the two ends of the plate are open (which implies that
D, vanishes but E,© survives in the plate theory), then from the plate
equations we have

(2.4.95)

2 2
2 4 2 _ djs

£ 15 —

4c® ps (1 - k) Ensa

(2.4.96)

2.4.6.2 In-plane poling

Next consider the case of a ceramic plate with in-plane poling in the
x; direction (see Figure 2.4.7). The plate is unelectroded at its major
surfaces.
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X3
N
P — | 2k B

Figure 2.4.7. A ceramic plate with in-plane poling.

For ceramics poled in the x, direction, we have [9]
S;3 83 & 00
S35 8; s, 00
S3 S sy 00
0 0 0 s O
0 0 0 0 sy

S O O O O

(=]
(=)
[
o
(=)
n
&
=

dy dy dy; 0 0 0)(e; O O

0 0 0 0 0 ds|,|]0 & ©

0 0 0 0 ds, O 0 0 g
We look for

wp =uy(x3,1), Uy =u3 =0, ¢=4¢(x3,0),
which leads to

§;=8,=8;=8,=8=0, §5=u;,,

E =E, =0, E;=-¢,,

1
L=TL=0,=T1,=T,=0, T =-;——(u1,3 —dsEy),
44

d
D,=D,=0, D, =—S£ul,3 +eL(1-k})E;.
44
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(2.4.98)

(2.4.99)

(2.4.100)
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The equation and boundary conditions to be satisfied are
Wy = Py, —h<x;<h,
su(l=ks)

1

STl
Su(l- k125 )

(2.4.101)

731 = O, X3 = ih,

which allow the following simple solution for the lowest thickness-shear
mode

. .
%, =sin ?iexp(za)t),

2.4.102
2 2 n’ ( )

- 4h2ps44 - k125) .

The corresponding plate solution can be found from Equations (2.4.85),
and (2.4.86), as

3 2
= (2.4.103)
Ph7s (1= k5)

Comparing Equations (2.4.102) and (2.4.103) we obtain

2
2 VA

K'l ZE.

If the plate is electroded at x; = 14 and the electrodes are shorted, from
the plate equations we have

(2.4.104)

2
2 V3
w, ~

. 2.4.105
4ph’s,, ( )

2.4.7 Thickness-shear vibration of an inhomogeneous ceramic plate

As an application of the equations obtained, we analyze thickness-
shear vibrations of an inhomogeneous ceramic plate with thickness
poling (see Figure 2.4.8) [25]. The thick lines represent electrodes. The
analysis is also valid for a plate of 6mm crystals with the six-fold axis
along the plate thickness. This structure has various applications in
piezoelectric devices operating with thickness-shear modes. When a >>
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h = max{hy,h,}, i.e., thin plates, the flexural deformation accompanying
thickness-shear can be essentially avoided by properly choosing the
aspect ratios of a/h and b/h. Therefore, in the following we neglect the
coupling to flexure and consider thickness-shear vibrations.

1 70)

-~
8
AN
S
vY__

< > x
om [ 4 |4 2hII 7 w— .

A
A 4

! 2b

Figure 2.4.8. An inhomogeneous ceramic plate with thickness poling.

For a plate with the material orientation and electrode configuration as
shown in Figure 2.4.8, the thickness-shear deformation is coupled to the
electric field E;. Hence the displacement and potential fields can be
approximated by

u = xu® (x,,0), Uy =uy 20,
¢ =49 (x,0).

Under Equation (2.4.106), in an electroded region, we have ¢©® =
constant. We are interested in free vibration modes when the two
electrodes in the figure are either shorted or open, i.e., V=0 or Dl(o) =0,
We discuss these two cases separately below.

(2.4.106)

2.4.7.1 Shorted electrodes

In the case of shorted electrodes, from Equations (2.4.67); and
(2.4.68),, we have the following equations for free vibrations:
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‘311“111 3h K c44u1(1) 3h1_2"915¢,(10) =Pﬁ1(l)s | x [<a,

"511¢11 +Ke15u11 =0, |x<a,

c”u,’11 =30 ke u® = piil”, a< x |<b,

u®(xa") = u® (xa*), (2.4.107)

ul) (ka”) = u) (xa®),

¢ (za") =0,

u{" (+b) =0,
where k2 =77 /12 . Note that Equation (2.4.107)s is of an approximate
nature. In Equation (2.4.107) we directly neglected the coupling to
flexure and did not use the thickness-shear approximation to eliminate

flexure. Consider time-harmonic motions with a frequency w. Then
Equations (2.4.107), 3 can be written as

— 1 2 0
c“ul(,l)1 +p(a) -y )u() 3h Ke,5¢( ) = 0, |x<a,

(2.4.108)
Guts + (@~ =0, a<xI<b,
where
2 2 2 2
ot = 31(2044 ST 3K Cu _Z Cu (2.4.109)
Bp  4hip hp  Amp

are the pure thickness-shear frequencies of a plate of thickness 24, or 2k,
when there is no piezoelectric stiffening due to E;. Equation (2.4.107),
can be integrated to give

¢\ = . L0 +C, |x<a, (2.4.110)
11

where C; is an integration constant. Substitution of Equation (2.4.110)
into Equation (2.4.108), yields

— 3
Bl + p(@ ~@ ) =20 =0, [xka, Q411D
1
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where

2
s

& = of (1+Ki), s = (24.112)

€114

o, is the pure thickness-shear frequency of a plate of thickness 2/,

when there is piezoelectric stiffening due to E,. The general solutions to
Equation (2.4.111) and Equation (2.4.108), are

u =C, coshax, +C, sinhax, +yC,, |x |<a,
ul =C,cos fx, +Cysin fx;,, a<x, <b, (24.113)

ul =C, cos fix, +Cy sin fr;, —b<x <-a,

where C; through Cy are integration constants, and

al = P(‘T’l2 ‘(02)
[
2 2
pr =LY %) (2.4.114)
n
_ 3xe
p(@’ —a) )h}

With Equation (2.4.113),, Equation (2.4.110) can be integrated once
more to yield

Ke;5

$© =

+Cx, +C,, |xlka,

(C3 -l—sinh ax; +C, —l-coshooc1 + yCle)
a a

& 2.4.115)

where C, is another integration constant. Substitution of Equations
(2.4.113) and (2.4.115) into the boundary and continuity conditions in
Equation (2.4.107) results in a system of homogeneous equations for C,
through Cs. For nontrivial solutions the determinant of the coefficient
matrix has to vanish, which determines the eigenvalues or resonant
frequencies. Mode shapes are determined by the eigenvectors. Because
of the symmetry in Figure 2.4.8, the modes can be separated into two
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groups. One is called symmetric and the other anti-symmetric in x,. In

applications the symmetric modes when #" is an even function of x, are

useful, especially the lowest one. For these modes we let
C,=C,=0, C,=Cs5, Cyg=-C,. (2.4.116)

Then from the continuity and boundary conditions at a and b, we obtain
the following equations for C,, Cs, Cs and Cs:

C, coshaa + yC; = C; cos fa+ Cg sin fa,
C,;asinhaa =-C;fsin fa+Cgficos fa,

2.4.117
&(C3isinhaa+7Cla)+Cla=0, ( )
&n a
Cscos fb+ Cy sin b =0.
The frequency equation is
ﬂa(l L s Vs tanhan
“n e (2.4.118)

+ aatan (b — a)tanh aa(l + &} =0.
&n

First consider a plate of uniform thickness (#, =A,). In this case

@, >,. As a numerical example, we consider the case of 7, =h, = 1

mm, a = 22 mm, b = 30 mm, and the electrodes are shorted. Cadmium
Sulfide (CdS) is used in the calculation. The material constants are given

in Appendix 2. For w,<w<@, , the modes are hyperbolic (or
exponential) in the unelectroded region and sinusoidal in the electroded
region. The first mode of u(" is plotted in Figure 2.4.9. The vibration is

essentially in the electroded region; once it enters the unelectroded
region it decays rapidly. The cause of this type of behavior is that the
piezoelectric stiffening effect in the unelectroded central region makes

@, > w,. The corresponding ¢ is shown in Figure 2.4.10.

www.iran-mavad.com
A se Gpudign 5 Qlasadily a0



Piezoelectric Plates 87

15 r O)
1

1.0 r

x 1(m)

L . . L

-0.08 -0.02 -0.01 0.00 0.01 0.02 .03

-10

-15 *+

Figure 2.49. 4" of the first thickness-shear mode in (w,,®, ) when
h, = h, (shorted electrodes).

15 1 ¢(0)

x 1(m)

-0.03 0.02 -0.01 0.00 0.01 0.02 0.03

-1.0 T

s 4

Figure 2.4.10. ¢ of the first thickness-shear mode in (w,,®, ) when
h, = h, (shorted electrodes).
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88 Mechanics of Piezoelectric Structures

Next consider a plate of non-uniform thickness (A, > h, ), still with
shorted electrodes. When A, is different from #,, the case of h > b, is
more useful in applications. In this case, when A, is sufficiently larger

than h,, we have @, <w,. As an example, we consider the case of
h, =2h, =2 mm, a = 22 mm, and b = 30 mm so that @, <w,. For

@, <@ < m,,the modes are sinusoidal in the unelectroded central region
and exponential in the electroded region. The first three symmetric
modes of " are plotted in Figure 2.4.11. They are the sum of a cosine

function and a constant in the central region and decay rapidly in the
electroded region. Therefore the vibration is trapped in the central region.
Near the edge of the plate there is essentially no vibration. This
important phenomenon is called energy trapping [27,29,30] and is very
useful in device applications. When the vibration is trapped to the center,
mounting the device at the edge will not affect the vibration. Energy

(1

Second mode

\ x 1(m)

0.000 0.01 0.020 0.030
S

-0.030 -0.020

Third mode sl

Figure 2.4.11. 4" of the first three thickness-shear modes in (@, ,®,)
when h =2h, (shorted electrodes).
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L5 174©
First mode Third mode

x 1(m)
— } } |
-0.030 0.030
Second mode

Figure 2.4.12. ¢ of the first three thickness-shear modes in (@, , @, )
when h; =2h, (shorted electrodes).

trapping can be due to either the mass effect in a plate with nonuniform
thickness or piezoelectric stiffening. In the structure discussed here, the
piezoelectric stiffening in the central region is against energy trapping in
the central region. A thicker central region is needed to overcome the
piezoelectric stiffening effect and produce energy trapping in the central

region. The corresponding ¢‘© is shown in Figure 2.4.12.

2.4.7.2 Open electrodes

Still consider the case of 4 =2h, =2 mm, a = 22 mm, and b = 30
mm so that @, <, . If the two electrodes are open, then D® =0

which implies that C, =0. In this case the boundary conditions on ¢,
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namely (2.4.107)¢ and (2.4.117);, should be dropped. The frequency
equation takes the following form:

B(1 - tanh Batanh Bb)+ & tan aa(tanh fa —~ tanh gb)=0. (2.4.119)

The first three symmetric modes of #" are plotted in Figure 2.4.13.
They are a cosine function only without C; (which is zero) in the central
region and decay rapidly in the electroded region. Compared to the
modes in Figure 2.4.11, the modes in Figure 2.4.13 are not trapped as
strongly. This is because for the case in Figure 2.4.13 the open electrodes
allow stronger electric fields in the central region, which cause more
piezoelectric stiffening there against energy trapping. The corresponding
¢© is shown in Figure 2.4.14. The two electrodes now have a differ-
ence in their electric potentials.

First mode ' Third mode

Second mode

-1.5 A

Figure 2.4.13. ul(l) of the first three thickness-shear modes in (@, ,®,)
when A, =2h, (open electrodes).
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First mode 1S T ¢ Third mode

Second mode

-1.5 +

Figure 2.4.14. ¢ of the first three thickness-shear modes in (@, ,®,)
when A, =2h, (open electrodes).

2.4.8 A ceramic plate piezoelectric gyroscope

Consider a rectangular ceramic plate poled in the thickness direction
as shown in Figure 2.4.15 [28].
Q
B

Uy F2
X2

2c P T /u1 F,
/ Uy 2a
xl/ R

2b

Figure 2.4.15. A ceramic plate piezoelectric gyroscope.
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The plate can vibrate at the fundamental thickness-shear modes in both
the x; and the x, directions. For a ceramic plate poled in the thickness
direction x;, these thickness-shear modes can be excited or detected
electrically by lateral electrodes on the sides at x; = ta or x, = +b.
Suppose a thickness-shear vibration u,; in the x, direction is excited by a
time-harmonic voltage 2V exp(iw?) applied across a pair of electrodes at
x; = *a. If the plate is rotating about its normal with an angular rate Q,
the Coriolis force F> will excite a thickness-shear motion u; in the x;
direction. This secondary thickness-shear will produce a voltage
2V,exp(iwt) across a pair of electrodes at x, = +b. ¥, can be shown to be
proportional Q and therefore can be used to detect Q.

We are going to use an approximate procedure to analyze the
gyroscope, which can be considered as a pemxrbation procedure [28] For
the thickness-shear motion excited by V), the main motion is V. We
approximately have the following one-dimensional problem from
Equation (2.4.76):

1 0 1
011”111_30 ilcqu’ =3¢ e ¢()—,0u1(), | x, < a,

0
"elsun 6'11¢(11) =0, |xlka, (2.4.120)
T =2c(k’cyu + kes0") =0, x, =*a,

¢© =4V, sinot, x, =+a.

As an approximation, we neglect the piezoelectric coupling term to "
in the electrostatic equation in Equation (2.4.120),. This gives an
approximate solution of the driving electric potential as

p© =1y sina)t;ile sin 2L sin cor . (2.4.121)
a /4 2a
In Equation (2.4.121) we have approximated a linear function of x; over
[-a,a] by a sine function. It can be considered as a one-term
approximation by Fourier series. This is sufficient for a qualitative study.
Substituting Equatlon (2.4. 121) into Equation (2.4.120);, we then obtain
the following expression for

u® = B, cos 2L sinat , (2.4.122)
2a
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where

2
B - 243 — elsVlz/ 4 = Z Caa (2.4.123)
a)2_a)020(1+cllcz) m pc

C44a

With 2" known, we have the displacement field
u, = x,u® = Bx, cos P sin oot (2.4.124)
| = X3l = DyXg > ’ 4

which leads to a Coriolis force field
f =208, xu,&, = -2Qu,E, (2.4.125)
or

x
/> = —2QwB, x, cos—Lcos ot

2a (2.4.126)

i)

4
= ——QawB, x, coswt = -2QwB,x, cos b cos wt,
7T

where we have approximated a cosine function over [-a, a] by a constant,
and similarly a constant over [-b, b] by a cosine function. With F, we
calculate the plate resultant

3 .
FO = [ xpfy, =~ % 2008, cos ™2 cosar (2.4.127)
¢ 3 2b
Then the boundary value problem for the thickness-shear in the x,
direction can be written as

* D 2.2 0]
Cutlyn =3¢ 7K Cylly

3
-2 0 1 (1
3t P+ ED = il |, I,
2c
1 0
resus) — 6,89 =0, |x,|<b, (2.4.128)
Tz(_f) = 2c(lc2c44u§l) + Ke15¢,(2°)) =0, x,=1b

¢© =1V, sinwt, x,=1+b,

0 1 0
D§ ) = 2c(lce15u§) —511¢’(2)) =0, x,=xb.
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In Equation (2.4.128) where V, is unknown, we need some circuit
condition joining the electrodes at x, = +b to determine V,. We consider
the simple case of open circuit in which D, or the charge, and hence the
current on the electrodes, vanishes. As an approximation, we neglect the
piezoelectric coupling term to ¢ in Equation (2.4.128),. Then, under the
Coriolis force F,\", we obtain

u) = B, cos’;“—;cos o, (2.4.129)
where
B, = 20 ~— 5. (2.4.130)
o’ —wl(1+1=)
Caa

With %" known, from Equation (2.4.128), , we obtain

2
O =4 sin—qz—cosa)tE”—A x—zcosa)t, 2.4.131
¢ 2 ) 8 27 ( )

where

_bes g (2.4.132)

_\/5311 v

The mechanical boundary conditions and the open circuit condition in
Equation (2.3.128) are satisfied. The electric boundary condition
(2.4.128), gives the output voltage

V,=¢(x, =b)

4,

2
{” ‘/fe”} 200 _ (2.4.133)
8v3¢g,; o wi(1+ c“cz)
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or, for voltage sensitivity

V.
V§2 = |:2k125 £:| = *
! N a)z—a)i(1+————c“cz)
Caa
(2.4.134)
o
X —— |cosat
o’ -2 (1+ c“cz)
Cua

In Equation (2.4.133), the three pairs of brackets on the right hand side
represent, from right to left, respectively, the driving of the thickness-
shear motion in the x; direction by the applied voltage V), the driving of
the thickness-shear motion in the x, direction by the Coriolis force, and
the sensing of the thickness-shear motion in the x, direction. The roles of
various material constants and geometric parameters are clearly
exhibited. At resonant frequencies, the above expressions become
singular. From Equation (2.4.134) it can be seen that for large voltage
sensitivity, the driving frequency and the two resonant frequencies of the
thickness shear motions in two directions must all be very close (double
resonance). This implies that @ must be very close to b and the plate is
almost square. When that is the case, we can write

‘

w;, (l+ ) (a)+Aa)1) ,
C““a (2.4.135)

@, (1+ ) (aJ+Aa)2)
c44b

which implies that

V, .2 b @

N (2.4.136)
V.0 2a (Ao, Y(Aw,)
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2.4.9 Equations for a quartz plate

Rotated Y-cut quartz exhibits monoclinic symmetry in a coordinate
system (x;,x;) in and normal to the plane of the plate (see Figure 2.4.16).

X
A2

2h N X1

Figure 2.4.16. A quartz plate and coordinate system.

2.4.9.1 Equations for a plate with the x; axis along its normal

When the normal of the plate is along the x, axis, the stress
relaxation 7.3’ =0 leads to the following relaxed material constants:

Cim =Cym —CiinCru I Cym>

€y =€y — €nCny / Com> (24.137)
Ej =€ +eme;n/cyy.
Introduction of the shear corrections factors
SP 51,80, 8P — x5 (2.4.138)
further modifies the relaxed constants into [17]
Cor = Kty j—ZKI‘c/+l~2Eijkl: (not summed),
€y = K/i ;284> (not summed), (4.2.139)

w=cos’(ijm/2), v=cos’(kir/2).

u
Kivj-

3, 5, or neither, respectively. Equation (4.2.139) can be represented by

, (or x7,,_,) is equal to ki, k3 or unity according as i+j (or k+/) is
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ey 0 ¢ K3Cy Cis KiCs
0 0 0 0 0 0
C 0 c K:C. C. K,C.
[5;,1=| L R e X B E1)
K€y 0 K3C3y K3K3Cyy  KiCys  K3K(Cyg
¢s 0 s K3Cys Css K1Cs6
KiCig 0 KiCy KiK3Ch KiCss K1KiCeg
en 0 &; Kk, 5 Keg
1| = _ — _
leg1=1€ 0 ey K38y &5 K&y | (2.4.141)
e 0 &3 Koy e Key
The first-order plate material constants are defined by
1
Vrs =Crs —CpCryCoss T8 =135,
a1
Wis = € —ekwcwvcvs, v,w=2,4,6, (2.4.142)

Sy =€ T €pChy ejw J.k=123.

The equations of the first-order theory take the following form:

2
10 =2, 50~y B, rs=135,

T +FO =2hpiil”, a,b=13,

Tou + F" =2hpiif?,

3
79, -1 + F = 2—;'— oV, (2.4.143)

a
DO + DO =y,
D — D + DV =0,

0 0 0
T( ) =24 ykls( ) ekyE( ))
D® =2k, SP +5,ED),

(2.4.144)

§J

DY = %(W,SS?) +¢,EM),
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SO =ud, 5O =u,
SO =4 +u, SO =4 +u®, SO =u® +ul,
SO =ul), SO =uf), S =ul)+ul}, (2.4.145)
EQ =—40, EO =0, EP =—¢O,
B =40, ED =40, E=0.
With successive substitutions, Equations (2.4.143) can be written as

seven equations for u®, u®, ¢© and ¢ . At the boundary of a plate

with an in-plane unit exterior normal n and an in-plane unit tangent s, we
may prescribe

T or u,(,o), TO or 49, T,,‘;” or ugo)

7O or ul, TP or u?, (2.4.146)
DO or ¢© DO or ¢O.

3

2.4.9.2 Monoclinic crystals

For monoclinic crystals, the material tensors c,.fk,, e, and 6‘5 are
given by Equation (2.1.2). Then the zero-order plate material constants
are found to be

& 0 o K3Ciy 0 0
0 0 0 0 0 0
[E’ ]= 513 0 533 K3E34 0 0 (2 4 147)
pg = = = ’ o
K3Cy 0 K3Cy K3kaCy O 0
0O o0 O 0 Css K\Cse
0 0 0 0 K\Css K1KiCes
ey 0 e; xey O 0
e, 1={ 0 0 0 0 ey Kexyl, (2.4.148)

0 0 0 0 ey Key
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0 & &3, (2.4.149)
0 &y &y

where
Ch=cy—chlc Ci3 =Cj3 —CpCylc
Ci1 =€ —C2/Cps i3 =C13 ~CCn3/Cys
— 2 -
Cy3 =C33 —Cp3/Cp» Gy =€y = €130/ C (2.4.150)

— _ 2 -— _
Cas =Caq —Co4/Cpy» €3y =C3y —CiyCoy /x5

€ =€ — el /Cyp,y 3 =3 =505 /¢y,

B B 5 (2.4.151)
ey =ey —epCylcy, & =& tepley.
The first-order plate material constants are
Yu 73 0 vn vz O
ul=|rs 7 0| [wel=| 0 0 vyl
0 0 s 0 0 w5
- (2.4.152)
sn O 0
[cy1=| 0O Cxn Cxnl rs=135 k,j=123,
i 0 6 ¢n
where
0122"44 +C1yCyy = 2€15C24C14 2
Yu=¢n -~ 2 = 833 /(511533 = 53);
C»Caq —Coy
. €23€1Cas +C34C14Cn ~C23C14C00 T C€34€12C04
Vi3 = €3 2 )
CnCyq —Cxy
= =513 /(8,153 —85)s (2.4.153)
2 2
Cy3C44 +C34Cpp —2€53C34Co4 2
V33 =Cs3 — =811 /(811833 = S13 )

2
C32C44 — €4

— 2 -
Yss =Css —Css / Cos =1/ 855,
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€12(C12C4 = C14Co ) + €14 (C14Co — C15Cxy)

Vi=én— 2
€20Caq —Cx

=dyyy +di3ss

€17(C3yCqqs — C34C24 ) + €14(C34C2p —C32Cyy)

Vi3 =63 — 2
€y2€Ca4 —C

=dyy; +d;¥ss,
Was = €35 — €56Cs6 / Ces5
Wis = €35 — €35Cs / Cos =357 555
2 2
e+ €12Cyy +€14Cyy —2€15€1,Cyy
¢ =é€n 3 >
CnCyy —Cy4
_ 2
G =€y +ex/cCe,
G2 =&y +ex5e36 /g

2
C33 = &35 + €36/ Ces-

The constitutive relations are
Tl(o) = 2h(allsl(o) + 513S§0) + K3514S£O) - EuEl(O) )
T = 21(E,, SO + 2,389 +x,8,8¥ -2, E™),

T = 2h(x;E,, S} )+ 138380 +1]C, S — 138, ),

Ts(o) = 2h(c55S5( )+ chssséo) _estéo) —e35E§°)),

0 0 2 0 0 0
Ts( ) = 2h(K1056S§ ) + K CGGSé ) _K1626E§ ) ‘K1336E§ ),

D =2h(g,, S +,8{ + K;2,,5{” +&,E{),
0 0

Déo) = 2h(625S§0) +K1e26Sé0) +'5'22E§ ) +523E§ ),

DY = 2h(3355§0) + K'1€36Sé0) + 3 ES) + 533E3(O) )
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T(l) - E S(l) S(l) _ E®
1= St + 783" —wnE )
Ta(l) = (7’135(1) +733S(l) '//13E11))

Ts(l)_ (7’ 5S(l) Wst(l) '//35E(l))

25’
DY = T(V/nSl(O) +y1388” + L ED),

2n
DY = T(‘//asss(o) + ¢ EP + HED).

The equations of motion and charge take the following form:
= 4,0 ) = (0) = (0)
Crytiy +Cssty 33 + (KCsg + K384 )5 13 +(Cp3 +Cs5 )13 3

z .4 © = .0 (1
+€,01) +e3sP33 +K3Cpyls) + K Csglhy 3

1
1 0 :+ (0
+625¢’(3) + — Fl( ) "pul( ),

= (0) 2 (0) 2= _(0)
(K1Cs6 + K3C14 YUy 13 + K| Cosly ) + K3 Caqlhy 33

(0) = . (0) = 0
+ K Csglly ) + K3CyuU3 33 + (K836 + K384 )P15

2 1 y., 1 0
+ K ceﬁul(,l) +K;3 C44”§g +K1e26¢,(1) +EF2( ) = P”g ),

= 0) (0) = .. (0) 0 = (0
(€55 +Ci3 Uy 13 + K\Csgly i) + K3C3ql 33 + Csstis ) + Ca3tly 33

= (] ) o
+(e35 +€13)P 13 + K\ Cs6ldy| + K3C34Us3 3

1
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(2.4.160)
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= ,,(0) 0) = 0) = 0)
enyyy + sty 33 + (K85 + K380 )y 13 + (€3 + €355 5

1) (W) 0
+K1e36u13+"'3314u31 1911 +E33053

1 o
_523¢,(31) +—D® =0,
h
U+ ysull + (1 + 755 )uld, + ¢(l)+ ¢(1)
i 111 Vss 133 Yis T ¥Vss U3z TV Vs
0 a
-3hn [chsa(um +u )+K1066(u§1)+u1))

1 0 3 1 (1
+K1326¢() +’f1936¢,(3 )]‘*‘ﬁﬂ() = p”l( ),

(3 +7’55)u131 "‘7’55”311 +733u333 +(wy +W35)¢13
_ 0 a
=307 [Ty +K3034u§3) K 044(14( ) +ui”)
3

1 -.(1
2R = pi)

= 4(0)
+ K., 1+
1491 2

1 o) ) 1 1
l/’11”1(11 + W5ty 33 + (W3 W35 )35 §11¢( §33¢,(33)
—-3h" [925 (u(o) (0)) + K€ (u(o) (]))

3

m (0) m _
—Epd —Exd ]+WD =0.

2.4.10 A quartz piezoelectric resonator

(2.4.163)

(2.4.164)

(2.4.165)

(2.4.166)

We now revisit the thickness-shear vibration problem of a quartz
plate analyzed in the first section of this chapter using the three-
dimensional equations. Consider a rotated Y-cut quartz plate as shown in

Figure 2.4.17.
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X2

2h 5 ¥l

N

Figure 2.4.17. A rotated Y-cut quartz plate.

103

The plate is electroded, with a voltage + 0.5V exp(icwr) applied at

x, =th . We study pure thickness-shear motions described by »",
without x; and x; dependence. The electric potentials are given by

V
® =0, g0 =—exp(ior).
¢ $7 =, explion)
From Equation (2.4.164) we have the equation for u{":
=3h7 [k cgeuy” + K008 ] = i,

from which we obtain

3xe 14 .
) = — 5 exp(iax),
phi(o° —w,) 2h
' 3/(12066
<] ph2 ‘

From Equation (2.4.157),

0 0 0 1 1
Dé ) =2h("19265é ) +522E§ ))=2h(’<1926u1() ‘822¢( ))

k2 2
=&, l:—zz‘sﬂ"y - I:IV exp(iawr),
" -0

o
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The surface free charge per unit area of the electrode at x, = 4 is given by

2
©

DY &y
—E = |22 Wexn(iot). 2.4.171
¢ 2h  2h o’ - pliar) ( )

Hence the capacitance per unit area is

Czﬁzgi 1______k226wi Egi 1_—k226w°°
vV 2n| ot-al| 2 Aw -w,) |

C=C,+C,, (2.4.172)

2 2
C. = 7] C = £y ki@

(13— H m = 2 90
2h 2h w* - w}

where C, is the static capacitance and C,, is the motional capacitance.

2.4.11 Free vibration eigenvalue problem

One of the major applications of the two-dimensional equations
developed is resonant piezoelectric devices. In these devices the
eigenvalue problem for free vibration frequencies and modes is of
fundamental importance. The free vibration eigenvalue problem of a
piezoelectric body using the three-dimensional equations was studied in
[9,31]. We discuss the two-dimensional version using the first-order
plate equations below [31,32]. Consider a plate with the x, axis along
its normal as shown in Figure 2.4.18. Let the two-dimensional area of

X2
N

2h SN

Figure 2.4.18. A piezoelectric plate and coordinate system.
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the plate be 4 and the boundary curve of 4 be C, and C be partitioned as
cC,vC,=C,uCp =C,
A (2.4.173)

C,NCr=CynCp=0.

The eigenvalue problem for free vibrations of a piezoelectric plate by the
first-order theory is

-7V = 22hou® in A4,

Jij
2%
_T(l) +T(°):a) ()] in A,
bap " 2a T3 Pl (2.4.174)
-DY =0 in 4,

-D) -D{ =0 in 4,

—S§0)+ (u(°)+u(°)+5 u(l)+§ u(l)) 0 in 4,

-S% += (uf,°2+u(°’) 0 in 4, (2.4.175)

E{ +¢,E~°’ +6,60 =0 in 4,
1 1 :
E§)+¢’(,,)=O in A4,

T(°)+2h(cyk,S,£?) g, E)=0 in 4,

(2.4.176)
T T(VrsSs“’ “VeE)=0 in 4,
D -2h(e;, S +£,E”)=0 in 4,
(2.4.177)

D'S"‘35‘<wassf>+:,,,,E§”)=o in 4
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~u®=0, -u"=0 on C,,
anj(,O):O, TP =0 on C,,

-9 =0, -¢®=0 on C,,

n,D® =0, n, D=0 on C,.

(2.4.178)

We look for values of @” corresponding to which nontrivial solutions
exist. For convenience we introduce the following vector U:
U=u®,ud, g0 g0 7O TO
i 2%q > )

st ji stha o

0 1 0 1
8§ 8105 E” QY

gy o

DO pW,
e (2.4.179)

and operators A and B:

AU={-T?, -TO + T, - DY

Jisj? L

1 0
-t -,

1
0 0 0 ! :
-85 +E(”§',i) +uy) +8,uf) +6,u),

1
Svl 0 0 0 0 1 1 1

E), (2.4.180)

- T +2h(E;, S - ey
3

_ro 2 S0y, gy

r 3 rs™s r >

D —2h(ey S +£,EV),

y=J
2K
Dt(zl) - T(WasS§l) + gabEgl))}’

3
BU = {2hpu,-(°),% ou 0,0,0,0,0,0,0,0,0,0} . (2.4.181)

We also define
3(A)={U| Equation (2.4.178) is satisfied} . (2.4.182)

With the above definitions, the eigenvalue problem can be stated as: Find
A = @® for which there exists a nontrivial U € Z(4) such that

AU = ABU. (2.4.183)
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For two vectors U,V € £(4), we introduce an inner product
<U;V>= L @OVO 4 4OyD 1 5O O 4 4B, 0
+TPGY + 179G + DB + D BY (2.4.184)
+SOFO 4 SOED L FOCO 4 EOCO gy
where U is given by Equation (2.4.180) and
V=000 y© 0 cO 0O pO pd

Ji 2~ba i
(2.4.185)
FO,FD,cO,cy.

For two vectors U,V € £(4), it can be shown by integration by parts
that

<AU;V >=<U; AV >,

(2.4.186)
<BU,V >=<U;BV >.

Therefore the operators A and B are self-adjoint. This is consistent with
the self-adjointness of the three-dimensional operators [9] from which
the plate equations are derived. With the above formulation in terms of
the abstract vectors and operators, it can be shown in the manner of [9]
that the eigenvalues are real and the eigenvectors associated with distinct

eigenvalues A and A™ are orthogonal:
<AUM; UM >=0, <BU™; U™ >=0, m=n. (2.4.187)

With the abstract formulation, in a way similar to [9], it can also be
shown that the Rayleigh quotient of the variational formulation of the
eigenvalue problem is

_<AU;U >

II(U .
©) <BU;U >

(2.4.188)

2.5 Second-Order Theory

In this section we explore the effects of the second-order terms in the
power series expansion. A second-order theory is outlined, and several
special cases of the second-order theory are examined.
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108 Mechanics of Piezoelectric Structures
2.5.1 Equations for second-order theory

A second-order theory describes coupled extensional (uf,o) ,a=1,2),
flexural (% ), fundamental thickness-shear (u{" ), thickness-stretch
(u31) ), and symmetric thickness-shear (u(z)) motions of a plate. For the
electrical behavior of the plate, we consider ¢, ¢® and ¢ . The

approximate displacement and potential fields are

u; = u(o) + x3u(l) + x3 u? + x3 (3)

(2.5.1)
¢ ~ ¢(0) + x3¢(1) + x3¢(2)_

We have included a few additional displacement components in Equation
(2.5.1). u$? and u{’ represent the thickness stretch or contraction due to
Poisson’s effect. From Equations (2.2.6) and (2.2.7) it can be seen that
u? together with 4 contribute to thickness-shear deformations S{”
and S which may couple to the other second-order strains due to
anisotropy. The two-dimensional plate equations we will obtain are for
u@, u® and u(® only. Other displacements will be eliminated through
stress relaxations. Within the approximation in Equation (2.5.1), the
strains and electric fields in Equations (2.2.5) through (2.2.10) become:

SO =u®, SO =y, SO =ud,

(0) 0 1 (0) (0) (l) (0) (0) (0) 252)
Si =y tuy, S =usptup, Sg=u, iy,
SO =i, S0 =uf), S0 =2, 053
SO =ul) +2uP, SO =u) +2u, SO =ul) +ul},
2 2 2 2 2 3
SO=uP, P =u SO =3, 050
SO =u® +3u, SO =ul) +3u, SO =ul)+uly,
0 0 0 0 1
EQ =40, EP=-¢D, E=-¢V, (2.5.5)
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EV =4, Ep=-¢%, E=-247, (25.6)

E® = _¢’(12), EQP = _(4(22), E® =0, 2.5.7)

Higher order strains Sf) are neglected. From Equation (2.2.17); we

obtain

3
TO + FO = 2hpii® + _2;’_ pi?®, ab=12,

TS, + F9 = 2hpii",

al3,a
20
Ty, - T3(3)+F2,“)=Tpu§,”, (2.5.8)
3
19, - 19+ O = 22 i),

72 2T3(,}) +Fb(2) _=r

ab,a

20 20
il + =i,

where we have truncated the right hand sides by keeping the inertial
terms of the displacement components of interest only. Equation (2.5.8);
is for extension, Equation (2.5.8), is for flexure, Equation (2.5.8); is for
the fundamental thickness-shear, Equation (2.5.8), is for the fundamental
thickness-stretch, and Equation (2.5.8)s is for the symmetric thickness-
shear. For the charge equations of electrostatics we have, from Equation
(2.2.17),, for an unelectroded plate:

D® + DV =0,
D) —D{¥ + DO =0, (2.5.9)
D& -2D{’ + DP = 0.

The case of an electroded plate will not be examined. In fact, in higher-
order theories, when electrodes are present, it is more convenient to use
two-dimensional charge equations obtained by the polynomial expansion
of ¢ in Equation (2.2.18).
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110 Mechanics of Piezoelectric Structures

For plate constitutive relations we truncate Equation (2.2.12) as

24

T = 2h(c;, S ~ e E) + -—j—(c,,k,s,g,” e, ED),
(2.5.10)
D =2h(e; SY +&,ED) + 2 (e,jks<2> +£,EP),
25
T; O = T(cyklskl ekijEIE])),
o (2.5.11)
DO = 5 CenSli SP +e,EM),
7:,(2) = _'( yle(O) kzj (0))"' (cykl S ekijEIEZ))’
2h3 (2.5.12)
D? = (e,jks“’) +&,E) o2 (eykS(z) +£,EP),

where S(.3) has been neglected. Since S(l) contains #{* and S,§.2)

contains u(z) and uf3) , Equations (2.5.10) through (2.5.12) are not yet

ready to be used. To obtain the proper constitutive relations we need to
make the following stress relaxations:

1
=0,

2.5.13
T® =0, g=345, @>13)

from which expression of S, R 53 and $ in terms of other
strain components can be obtained to eliminate #” and #” in

Equations (2.5.10) through (2.5.12). Then Equations (2.5.8) and (2.5.9)
can be written as eleven equations for u(”, ¥, u¥, ¢, O and

¢(2) . In order to predict the exact cutoff frequencies for the two

fundamental thickness-shear, the fundamental thickness-stretch, and the
two symmetric thickness-shear modes, five correction factors will be
needed.
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2.5.2 Extension, thickness-stretch and symmetric thickness-shear

To examine the basic behaviors of the second-order equations, we
study the special case of an isotropic elastic plate. In this case the
second-order equations decouple into two groups. One is for coupled
flexure and fundamental thickness-shear, and the other is for coupled
extension, thickness-stretch, and symmetric thickness-shear. The former
has been discussed in the fourth section of this chapter. We explore the
latter below.

It is obvious that when a plate is in extension there is thickness
stretch or contraction due to Poisson’s effect. At the low frequency range
this thickness deformation can be approximately determined from the
stress relaxations in the zero-order theory, i.e., Equation (2.3.15) or
Equation (2.3.23). When the frequency gets higher or close to the
fundamental thickness-stretch frequency, resonance of the thickness-
stretch vibration needs to be considered. In addition, high frequency
extensional waves become dispersive (see Figure 2.1.4).

First-order, two-dimensional plate equations governing coupled
extensional and thickness-stretch motions of plates are due to Kane and
Mindlin [33]. This theory includes the resonance of the fundamental
thickness-stretch mode and can predict the dispersion of high frequency
extensional waves. The equations of the Kane-Mindlin theory can be
reduced to the classical equations of extension for low frequencies and
long waves [13]. However, the Kane-Mindlin theory has a serious flaw.
It cannot predict a complex branch of the dispersion curve that the three-
dimensional theory predicts to exist in the frequency range of interest
[34]. It was also shown in [34] that in order to capture this complex
branch the second order effect of symmetric thickness-shear has to be
included. Equations for elastic plates in coupled extension, thickness-
stretch and symmetric thickness-shear motions are due to Mindlin and
Medick [34] using polynomial expansions. Two-dimensional equations
containing extensional, thickness-stretch, and symmetric thickness-shear
and higher-order modes were also obtained in [19] using trigonometric
expansions. The equations for extensional, thickness-stretch, and
symmetric thickness-shear in [19] are equivalent to the Mindlin-Medick
theory in that their dispersion curves have the same geometric structure.
In the following we will use the equations in [19] for which the
correction factors have been determined.
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112 Mechanics of Piezoelectric Structures

According to the notation used in [19], we orient the plate normal
along the x; axis (see Fig. 2.5.1)

X2

2h X1

v

Figure 2.5.1. An isotropic elastic plate and coordinate system.

In the absence of body force, the differential equations for coupled
extension, thickness-stretch and symmetric thickness-shear in [19] are

24
0 0 1 0
HU + (A + p)us ), + - Laud = pi®, a=13,

pag), - A+ 2 )2 o

ﬁalus°;+——-—2(“““> 2= pi),
h ’ 3h

V3
Hatge + (Aot s = Y s =

(2.5.14)

2(A+4u) (1) -(2)
ok SASLI Sl #®
3 = pU,
where A and y are the Lamé constants of an elastic material. u{” (a =1,

3) are extensional displacements, ug) is thickness-stretch, and uf,z) is
symmetric thickness-shear. a; and o are two correction factors given by
T
al =Z, a2 =a2(V), (2.5.15)

where v is Poisson’s ratio. The three-dimensional displacement field in
this theory is given by

X
ua(x19x2ax3=t) = u((JO)(xlax3at) + uf,z)(xl,x3,t)c057r(1 - _2'):
(2.5.16)
T X
Uy (%), %y, %3,1) = ugl)(xl,x:;,t)cosz(l ——hl)
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The plate resultants are given below. Those associated with extension are

T = (A +2m)u® + Au?) + 2; ul),

2
T = (A+2u)? + +7/1u§1), (2.5.17)
0 = el + ).
The two self-equilibrating shear resultants 7.3 for thickness-stretch are

T = gy du), + 2: @ (2.5.18)

while the second-order resultants are given by
T = A+ 2uyu? + Au?) - i: uy),

T = (A+ 2w + Au? - 24 “Zud,

(2.5.19)
TP = p(u® +u®).

We now consider straight-crested waves propagating in the x;
direction (@ /dx; = 0). Furthermore, we look for solutions in which
u{” = u{¥ = 0. Then, Equations (2.5.14) reduce to

(l+2,u)u]((i)] +%ozl = = pu (0),

,Uazuzn (/1'*'2/1)( )2 O

(2.5.20)
24 4
- + ———2(1 F4p) Uy = piis?,
3h
(e 2D, - i - 22— i

Let
" = A expi(&x, — o),
u® = AP expi(&x, — wt), (2.521)
) = —idy) expi(&x, — ax),
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114 Mechanics of Piezoelectric Structures
so that Equations (2.5.20) yield
(24 20)(=A0) + 2 0 AD¢ = —per 4,

pon, (—AVE?) - (/1+2/1)( )A(l)
2(/1+4y)

22
+ 7ozl,at,@): B APE = —p 4D, (2.5.22)
/A
(A+2u)-A78) - w47
_ 2(/1;'}14/1) Agl)é _ _pszl(z)_

For nontrivial solutions, we have

BX2-0 -k -2)Xx 0
~(K*-2)X K +a,X*-Q° -34—(k2 +2)X|=0, (2.5.23)
T
0 —4—(k2 +2)X X +4-07
3z
where we have used the notation
¥ 2§h’ /(ﬂ'v2
g (2.5.24)
2 _A+2u 2 _ M 2_V12_ 1-v .
w="E Vst =L .
P yo, V3 1-2v

v; and v, are the speeds of longitudinal and transverse plane waves in an
unbounded, isotropic elastic body, respectively. Equation (2.5.23)
determines the dispersion relations for coupled extension, thickness-
stretch, and symmetric thickness-shear modes of the plate. These
dispersion curves are shown in Figure 2.5.2 for v=0.25 and o, = 0.845.
Besides being able to describe the slope and curvature of the
dispersion curve for long thickness-stretch waves at frequencies close
to the first thickness-stretch frequency, Equation (2.5.23) can also pre-
dict the complex branch of the dispersion relation that was missing in
the Kane-Mindlin theory. We have the following local, asymptotic
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Q
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Figure 2.5.2. Dispersion curves for coupled extension, thickness-stretch
and symmetric thickness-shear waves [19].

expressions of Equation (2.5.23) for long waves. Near the lowest
thickness-stretch cutoff frequency, i.e., near X =0, Q =k, we have

=0 - @ au-me, @52

while near the symmetric thickness-shear cutoff frequency ( X =0,
Q=2),

1R

O’ =~ 4+41—k2[§1%(k2 +2) +(4- KX, (2.5.26)
- T

where

o, =a,+ kl—z(k2 -2)%. (2.5.27)
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We note that Equations (2.5.25) and (2.5.26) break down when &= 4 or
v = 1/3; this represents the degenerate case when the lowest thickness-
stretch frequency coincides with the symmetric thickness-shear
frequency.

2.5.3 Elimination of extension

For long waves at frequencies close to the first thickness-stretch
frequency Q=4k , an approximation can be made to eliminate the
coupling to extension [35]. Dropping the term quadratic in £ in Equation
(2.5.22), for long waves and setting Q = k , we obtain

Al(o) - _ﬁ 21

AN 2.5.28
TA+2u 4 ( )

which is equivalent to
u® = _h_24 —u{y. (2.5.29)
TA+2u ~

Substitution of Equation (2.5.29) into Equations (2.5.20),3 yields the
following equations for coupled thickness-stretch and symmetric
thickness-shear:

M (4 +2u)(2”_h)2u§1) +2()~_+4/2u§2> (1

FOT 3h o (2.5.30)
A+ 203} - i - B2 i
Now, letting
) = AP expi(&r, — o), @531)

uy) =~idy” expi(x — o),
we obtain the following dispersion relation from Equation (2.5.30):
X2+ k2 -Q? —4—(k2 +2)X

3z

A =0. (2.5.32)
3—(k2 +2)X X +4-0Q°
T
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The dispersion curves determined by Equation (2.5.32) for thickness-
stretch and symmetric thickness-shear are plotted in Figure 2.5.3 for v =
0.25 and 0= 0.845. A comparison to Figure 2.5.2 shows that Equation
(2.5.32) has the same behavior near the first thickness-stretch frequency
for the slope, curvature, and complex branch, but the low frequency
branch of extension has disappeared. It can be verified that near X =0, Q
= k and near X = 0, Q = 2, the asymptotic expressions of Equation
(2.5.32) are exactly Equations (2.5.25) and (2.5.26). Thus Equation
(2.5.30) can be used to study long, coupled thickness-stretch and
symmetric thickness-shear waves.

25... Q

Figure 2.5.3. Dispersion curves for coupled thickness-stretch and
symmetric thickness-shear waves [35].

2.5.4 Thickness-stretch approximation

We now further reduce Equation (2.5.30) into a single equation for
u{" by eliminating »® [35]. Similar to the derivation of Equation

(2.5.29), for long waves and Q near k, Equation (2.5.30), can be
approximated by
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u(z) 8b A+ 4/.[ (1)
1 2 1
372 A-2 U

Substitution of Equation (2.5.33) into Equation (2.5.30), results in

(2.5.33)

prus), - ~(A+2p) )2 M = pugh (2.5.34)

where

2 2 2
16 (A+au) _ 16 K +2)°

= + —_—
TR w-2m) 2T o ko4

(2.5.35)
It can be verified that the dispersion relation arising from Equation
(2.534)is

Q*=k* +rX2
(2.5.36)

=k’ -—— [——(k2 +2) — a3 (4 - k%)X,
4-— k
which is the same as Equation (2.5.25). Therefore Equation (2.5.34) can
be used to study long thickness-stretch waves. Equation (2.5.36) is
plotted in Figure 2.5.4 for two values of v.

5 . Q . - .
- - -
o~ - 4 4
\-’\
3 -
I Ll T 2 T Ll 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Im(X) Re(X)

Figure 2.5.4. Dispersion curves for thickness-stretch waves. Solid line: v
= 0.3. Dotted line: v=0.35.
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In addition to missing the complex branch of the dispersion curves,
another flaw of the Kane-Mindlin theory is that it predicts a positive
curvature near X = 0 for thickness-stretch modes when v < 1/3
[13,34,35]. This does not agree with the result of the three-dimensional
theory. Equation (2.5.20) or (2.5.30) can predict the correct sign of
curvature for the thickness-stretch branch near X = 0. Since the
dispersion relation of Equation (2.5.34) is asymptotic to that of Equation
(2.5.20) or (2.5.30) near X = 0, it can be expected that Equation (2.5.34)
can predict the correct sign of curvature there. This relies on the sign of
r, which must be negative for v < 1/3 to yield the correct sign of
curvature. Calculations of r are listed in the following where the value of
o, as a function of v is from [19]:

v 0 01 02 025 03 035 04
a, 0764 0798 0830 0.845 0.860 0.874 0.888
r —0676 —-1.03 -194 =333 -939 240 932
k? 2 225 267 3 35 433 6

(2.5.37)

It is seen that for k£ <2 or v < 1/3, the sign of r is indeed negative and
therefore the correct sign of curvature is predicted by Equation (2.5.34)
near X = 0 for the thickness-stretch branch. We also note the drastic
change of » near £ = 2. In the above analysis we assume that & is
sufficiently far away from 2 because the degenerate case of £ = 2 needs
special treatment. Since Equation (2.5.34) cannot predict the complex
branch of the dispersion curve, it is valid for small wave numbers before
the complex branch comes into play. It is seen from Figure 2.5.2 that the
complex branch needs to be considered when X is roughly greater than
0.5. Equation (2.5.24) then implies that Equation (2.5.34) is valid for
waves with wavelength A = 27/& > 8h, or four times the plate thickness.

For thickness-stretch vibrations governed by Equation (2.5.34), g)

the major displacement and the corresponding plate resultant is 7,3 .

Under the present thickness-stretch approximation, from Equations
(2.5.18) and (2.5.33) we obtain

64# s Ak ity

T = /1+
12 ( 2 2, 2

(2.5.38)

In the fourth section of this chapter it was shown that thickness-shear
modes exhibit energy trapping behavior. Since Equation (2.5.34) has
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the same mathematical structure as that for the thickness-shear
approximation, it can be expected that thickness-stretch modes will also
exhibit energy trapping. However, due to the fact that » changes sign at k
= 2, there may be two types of trapping for thickness-stretch modes.
When £ > 2, the situation is the same as the trapping of thickness-shear
modes because in this case the curvature of the dispersion curve of
Equation (2.5.34) near X = 0 has the same sign as that of the thickness-
shear approximation. When & < 2, the situation is different and we will
discuss this case only. To this end, consider the plate in Figure 2.5.5,
which has a small geometric discontinuity with s; < h,.

X2

2h2 2h1 » X1 2h2

2a

Figure 2.5.5. An elastic plate with slightly different thicknesses in
different portions.

Equation (2.5.34) applies to each portion of the plate:

(1) 1) _ (1)
Vz’"”zn a’l Uy’ =i, | x [<a,

(2.5.39)
v, ruglgl - w; ugl) —-u(l), | %, [>a,
where we have denoted
A+2 T A+2
o I RS St o (—) (2.5.40)
p2h P

At a junction of two portions of a plate, the continuity of #{" and Y

should be prescribed. In Equation (2.5.40), @y and @; are the thickness-
stretch frequencies of infinite plates with thickness 24, and 2,
respectively. The dispersion curves predicted by Equation (2.5.34) for
long thickness-stretch waves in infinite plates with thickness 24, and 24,
are qualitatively sketched in Figure 2.5.6.
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Ao
N—— !
\1 Q
(1))

Im(§) < —» Re($)

Figure 2.5.6. Dispersion curves for long thickness-stretch waves in
infinite plates with thicknesses 24, and 24,.

Since h, < h;, we have @ > @,. We are interested in time-harmonic
vibrations with @ < @ < @, and for these solutions, we have

a 2.1y _
”231 + 6} ug) =0, |x |<a,

R (2.5.41)
Wi —0uy =0, [x[>a,
where
2_ 2 22
=2 522 "% (2.5.42)
-vr -vr

Since for £ <2 or v < 1/3, the parameter r is negative, and since @y < ¥ <
@, we have 67 >0 and &; >0. Equation (2.5.41) then shows that for
|x;} < a the solution is sinusoidal and that for |x;| > a the solution decays
exponentially. Hence, vibration is confined in the central region of |x;| <
a. Therefore the vibration energy is trapped. Obviously, when k& > 2, for

energy trapping we must have 4, > h,, which is similar to the trapping of
thickness-shear modes.
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Chapter 3
Laminated Plates and Plates on Substrates

Piezoelectric plates are often attached to or embedded in elastic
plates for various applications. These structures can be treated in general
as laminated plates. In this chapter we first analyze two special structures,
i.e., an elastic plate with piezoelectric layers on one or both of its major
surfaces. Then a general discussion on laminated piezoelectric plates is
presented, followed by the analyses of two problems of a plate on a half-
space.

3.1 Elastic Plates with Symmetric Piezoelectric Actuators

In this section, we consider the simplest case of an elastic plate with
piezoelectric layers (actuators) symmetrically attached to its major
surfaces. In this case, bending of the elastic plate can be produced by
anti-symmetric voltages applied to the piezoelectric actuators without
coupling to extension. A system of two-dimensional equations for the
flexural motion of the combined elastic plate with piezoelectric actuators
on it are obtained from the two-dimensional equations for the
piezoelectric actuators and the two-dimensional equations for the elastic
plate by satisfying the plate-actuator interface mechanical and geometric
continuity conditions [36-38]. The piezoelectric actuators can be partially
electroded, which has an important consequence of reducing the
concentration of the actuating shear stress [37].

3.1.1 Equations for a partially electroded piezoelectric actuator

Consider the thin piezoelectric ceramic plate partially electroded at
its major surfaces as shown in Figure 3.1.1.

122
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X2

Electrodes

X3

2n'

Figure 3.1.1. A partially electroded thin piezoelectric plate.

We summarize the equations for the extensional motion of a
piezoelectric plate in the third section of the second chapter below. The
major terms in the expansions of the mechanical displacement #; and
electrostatic potential ¢ are

0
ui :ui( )(xbst)a

(3.1.1)
¢=x,00(x,,0), a,b=12,

where we have also considered the flexural displacement %{*, which
will be included in the analysis. Note that in Equation (3.1.1); we have
not explicitly written the thickness-stretch displacement that accom-
panies the extension of the plate. In general the expansion of ¢ has a ¢©
term that is independent of x;. In the structure to be analyzed ¢ has no

contribution. Therefore we start from ¢. The balance of linear
momentum now takes the form

T(O) +F(0) =p 2h’ (0)

ab,a

(3.1.2)
F9 = p2n'i”,
where p’ and 24’ are the actuator mass density and thickness,
TO = j Todx;, FO =[T;,]", . (3.1.3)
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It is assumed that the plate is very thin and does not resist bending. The
surface load is responsible for its motion in the x; direction. In the
electroded region the electric potential ¢ is at most a function of time.
In the unelectroded region the following equation of electrostatics is
needed to determine ¢:

DY —D® + PO =, (3.1.4)
where
K .
D" = J‘_hr Dxjdxy, DV =[x,D,]%, . G.1.5)
The plate constitutive equations are
TO =28 SO +y,.6D), r,s=1,26,
D =2H(y3,S," — 5524, (3.1.6)
2h'3
D =2,
where
59 =@ + ) (3.17)
Note that Equation (3.1.6); is taken from Equation (2.4.21) by setting

S ,51) =0. For a ceramic plate poled in the x; direction, from Equations
(2.3.35) and (2.3.36), in the notation of this section

7] E EN2/ E
i ¢, 0 ch=cy—(e3) /e,
E EN2, E
[rrl=|ch e 0] ch=cip—(c3) /cm, (3.1.8)

P r _ E
0 0 Cé6 | Css = Cos>

[0 0 0] 5
wel=|0 0 0 ,e“_e;‘ _le;;“ €335 (3.1.9)
_631 eﬁ 0_ — 1y&sdy
_gll; 0 P _ .S 2 4 E
[cy1=| 0 &h ,g‘,}_g‘;”‘j/c“;’ (3.1.10)
0 0 &P £fy =&y +ey/cy.
33
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With Equations (3.1.8) through (3.1.10) we can write Equation (3.1.6) as
];(10) = 2h'(c1"1u1(2) + c,’;ug?z) + e3”1¢(l)) ,
TP =21 (chu +chius) + efip™), (3.1.11)
T =20 cly (w3 +145)),
DV =2h'(efjul)) — ef¢™),
3 (3.1.12)
DP =2 5140,

Substitution of Equation (3.1.11) into Equation (3.1.2), yields the

equations for the mechanical displacement u®
0) 0 0 y, 1~ _ s
clplul(,ll +06pGu1(,2)2 +(ch "'06’,6)”%,1)2 +eﬁ¢,(1) +5}7FI( ) = p,ul( ),
: (3.1.13)
0 0 0 1 0 10
(¢t +ce’3)u1(,1)2 +Cspsu§,1)1 +‘31plu§,2)2 +e3’j¢,(2) +2_h’F2( ) = P'“§ ).

Substituting Equation (3.1.12) into Equation (3.1.4) we obtain the
following equation for ¢" in the unelectroded region:

13
- z%—g{{q)ﬁ,‘j —2n'eful) +2h' ehp® =0, (3.1.14)

where we have taken D =0.

3.1.2 Equations for an elastic plate

A schematic diagram of an elastic plate with thickness 24 and
density p is shown in Figure 3.1.2.

1; X3

2h . X

Figure 3.1.2. An elastic plate.
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The flexural equations of motion for an elastic plate with the effects of
shear deformation and rotatory inertia can be obtained from the equations
in the fourth section of the second chapter.

Ta(;),)a + F3(0) = 2phu§0) >

Ty~ T3 + F) =§‘ph3ﬁf,‘>, R
where

" = | Txdy, n=0]

F9 =Ty (h) - T3 (<h), (3.1.16)

F® =Ty, (h)+ Ty (-h))

We consider an orthotropic elastic plate with the following constitutive
relations:

0 2= 0 1
71(3) =2hK; Css (ug,l) +u1( )),

| (3.1.17)
Ty = 2hiyCos (u5) +u3)),
2
Tl(ll) = §h3 (711”1(,11) + 712”9,)2 X
2
T2(21) =—§h3(}/21u1(’11) +}/22u§1’)2 s (3.1.18)

2 1
T = §h3766 (ux(,lz) + ug% )
where
Cas =Cay> Css =Csss
2 2
Yiu=c¢n—Ci3/Cxy ¥y =y —Cpley, (3.1.19)
Y12 =Cr2 €363, /€33, Yes = Ces-
The displacement field of the elastic plate is approximately given by

u, uy =, (3.1.20)

ua=x3 a
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3.1.3 Equations for an elastic plate with symmetric actuators

Next we consider an elastic plate with partially electroded
piezoelectric actuators symmetrically attached to its major surfaces (see
Figure 3.1.3).

2h'

» X1

Figure 3.1.3. An elastic plate with symmetric piezoelectric actuators.

We combine the equations for a thin piezoelectric plate (actuator) and the
equations for an elastic plate into a set of equations for the flexure of the
elastic plate with actuators on it. This is done by satisfying the geometric
and mechanical continuity conditions between the elastic plate and the
piezoelectric actuators. From this point forward we use superscripts 7" or
B for fields associated with the top or the bottom actuator. Fields without
such superscripts are for the elastic plate. From Equation (3.1.3) we
obtain the following forces on the top actuator:

Fb(O)T =-T, (h), F3(0)T =-Ty (h). (3.1.21)

From the displacement fields in Equations (3.1.1) and (3.1.20), the
continuity of mechanical displacement between the top actuator and the
elastic plate can be written in the following form:

uO" =hu®, 0T =4, (3.1.22)
Similarly, for the bottom actuator we have

FO8 =T, (-h), FOP =T, (-h), (3.1.23)

U =, YO =0 (3.1.249)
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From Equations (3.1.21), (3.1.23) and (3.1.2) the equations of motion for
the top and bottom actuators are

Tova — T ()= p2H i, (3.125)
_ 33(h)=pl2hfﬁ§0)T, .1,

TP + T, (—h) = p"2h ("8,

ab.a
Ty (=h) = p'2h'ii{"".

For the elastic plate, from Equations (3.1.16),3, (3.1.25) and (3.1.26) we
have

(3.1.26)

F3(0) — _plzhr ii§°)T _ plzhr i{-gO)B, (3127)
FO =HTYT - p2 il — TP + p'2h'ii{V%), (3.1.28)

Substitution of Equations (3.1.27) and (3.1.28) into Equation (3.1.15)
yields
TS, =2phii{? + p' 20 i"" + p' 21§V,

a3,a

@Y +hTd" - 0%, - T (3.1.29)
- %ph3iif,l) + h[przhrii‘(IO)T _ p'2h'iif,°)B ]

With the continuity conditions in Equations (3.1.22) and (3.1.24), we can
write Equations (3.1.29) as

T, = i
o . (3.1.30)
T, b(;?b - T3(3 ) = Iut(ll)’
where
T =10 + ALY - hT,D”,
m=2ph+4p'H, (3.1.3D)

s~ 2

I =3 W+ 4p'h' B2
T a(;) has the clear physical meaning of total moments consisting of the
moments due to the bending of the elastic plate and the extension of
the actuators. m is the mass per unit area and / the rotatory inertia of
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the plate with the actuators. In the following we assume that the applied
voltages on the top and bottom actuators are of equal magnitude and
opposite signs and denote

P07 = _p0B _ 4O (3.1.32)

Then for constitutive relations, from Equations (3.1.31);, (3.1.11),
(3.1.18), (3.1.22) and (3.1.24) we obtain

Tl(ll) = 7;11"1(,11) + };12”52 + 4hh'93ﬁ¢(1)’
15 = 5,,u® + 7,,ul)) + 4h'ef, g0, (3.1.33)
]‘](21) = 7’:2(11) = Vs (ul(lz) + ugl% ),
where
A 2 3 1.2 .p A 2 3 .2 .p
Y =§h yutah'hcll, v, ='3—h Y t4h'hch,
) ) (3.1.34)
Vo = §h3722 + 4h’h2"1‘;a Yes = §h3y66 + 4h'h2‘76pe-

0

Expressions for T a(,_?) in terms of ug) and uf,]) are given by Equation

(3.1.17). Substitution of Equations (3.1.17) and (3.1.33) into Equation
(3.1.30) gives the equation for the flexural and thickness-shear motions
of the whole plate including the actuators

2h’f12555 (ug?l)l + ul(,ll) )+ 2}”"22544 (“g?z)z + ”gl)z) = ”A”"'go) >
};11”1(,11)1 + 7;121‘51,)21 + 4h'hesﬂ¢,(11)

+ Pos iy +ufl) — 2T (uf) + )= TP, (3.1.3%)
7 22”%1,)22 + ?12”1(,11)2 + 4h’he3’]¢’(21)

+ Vs (“1(12)1 + ugljl )- 2h’f22544 (u§02) + ugl)) = iﬁgl)-

In the unelectroded portions of the actuators where ¢ is unknown,

Equation (3.1.14) is needed which now takes the following form with the
use of Equation (3.1.22);:

2
- %gﬁ;ﬁgg —2h'heful), + ef 20 ¢V = 0. (3.1.36)
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At the boundary of a finite plate with a unit normal », and a unit tangent
s, we need to prescribe

n,T, (1) or u®n
n,TPs, or uls,, (3.1.37)
T, n(f ) or u§°’.
For electric boundary conditions we need to prescribe
n,D or ¢V, (3.1.38)

Although the equations derived in this section include shear deformation
and rotatory inertia and can be used in situations when the elastic plate is
not very thin, the piezoelectric actuators are still assumed to be very thin
compared to the elastic plate and are treated as thin films that are in
extensional motions and do not resist bending.

3.1.4 Reduction to classical flexure

When the elastic plate is very thin, the effect of shear deformation
and rotatory inertia can be neglected. Equations for this case were given
in [37], and can be reduced from the equations derived above. For thin
plates we neglect shear deformation and rotatory inertia, which results in

1=0, 4 =-u{. (3.1.39)

Then, similar to the reduction in the fourth section of the second chapter,
Equation (3.1.33) and Equations (3.1.35) through (3.1.37) reduce to

fi(ll) = —7,1u3 11 712”3 22 + 4h’hep¢(l)
O 0) 1 p (1)
Iy = 712“3 o — Pty +4hhef 9", (3.1.40)

1 1
Tl() _T() _“27’66”31)2:

1 5 (0)
Ta(b)ab_ 711”31111 2(712+2766)u31122 V22U3 202

+4h’he31(¢(111) +¢5)) = mii”, (3.1.41)

gl,¢<‘> + 2k heful®), + 20 el =0,
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N 0’}1(0)
n,TPn, or 0;’1 ,
A (3.1.42)
o é']'(l) o
T,,(3) +—é':;‘ or u§ ),
where
0) _ AQ (1 ~a
19 =10, TO =n,7Ps,. (3.1.43)

3.1.5 Dispersion relations

To see the difference between Equation (3.1.35) and Equation
(3.1.41);, we consider the one-dimensional case of fully electroded
actuators with shorted electrodes. Then

u’ =0, ¢V=0, 3,=0. (3.1.44)
From Equation (3.1.41) we obtain
_}711“15?1)111 = mii§”. (3.1.45)
The substitution of the wave solution u§°) =expi(&x, — wt) into Equation
(3.1.45) leads to the following dispersion relation for flexural waves:

w? =1L g (3.1.46)
m

Under Equation (3.1.44), from Equation (3.1.35) we have

2 0 1 A (0
2hxy Cs5 (ug,l)l + ul(,l)) = mug ),

o ()} 2 ©) I 5. (1) (3.1.47)
Yulii -—2hK'1 Css (u:,"1 +u ) = Iul .
Consider the following waves:
(0) _ .
u; ' = Aexpi —-ot),
3 pie ) (3.1.48)

ud = Bexpi(&x, — ax).
Substitution of Equation (3.1.48) into Equation (3.1.47) results in
2hiclC (—E2A+iEB) = —ma’ 4,

. o ., (3.1.49)
— P4y E B =2hKle, (iEd+ B) = —[0*B,
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which is a homogeneous system for 4 and B. For nontrivial solutions the
determinant of the coefficient matrix has to vanish, which yields the
dispersion relation

mo’® —2hilC £ 2hle i

A 0. 3.1.50
- 2hx{Ts5ié 10* = 7,&* —2hx s ( )

Normalized dispersion curves predicted by Equations (3.1.46) and
(3.1.50) for the case of &= 20A"are plotted in Figure 3.1.4 in which
2h | p

X=& v=2 L, (3.1.51)

Thickness-shear

Classical
flexure

Flexure
with shear

Figure 3.1.4. Dispersion curves of flexural and thickness-shear waves.

The correction factor is simply taken to be 1 in the calculation, as an
approximation. One basic difference between Equations (3.1.50) and
(3.1.46) is that Equation (3.1.46) has only one flexural branch of the
dispersion curve, whereas Equation (3.1.50) has two branches for
flexural and thickness-shear waves. For long waves with vanishing ¢,
Equation (3.1.46) implies a vanishing @. The flexural branch of Equation
(3.1.50) has a vanishing @ near ¢ = 0. The thickness-shear branch has a
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finite cutoff frequency at ¢ = 0. For flexural motions, Equation (3.1.46)
and the flexural branch of Equation (3.1.50) agree only for very small
values of &h. Since in the flexural problem of a finite plate the wave
number ¢ is of the order of the inverse of the dimension L of the plate,
Equation (3.1.46) is valid only for plates with small values of #/L, or
very thin plates. When A/L is not very small, the equations with
thickness-shear deformation and rotatory inertia should be used.

3.2 Elastic Plates with Piezoelectric Actuators on One Side

In some applications an elastic plate carries a piezoelectric layer only
on one side, either as an actuator or a sensor. In this case the structure is
sometimes called a unimorph. For unimorphs, due to the asymmetry
about the middle plane of the structure, bending and extension of the
middle plane are inherently coupled. This causes complications in
modeling. In this section we derive two-dimensional equations for a plate
piezoelectric unimorph and use the equations obtained to analyze circular
disk unimorphs [39]. A unimorph is a special case of laminated plates.
Two-dimensional equations for laminated piezoelectric plates can be
obtained by combining equations for each layer like in the previous
section. They can also be obtained directly by substituting approximate
expressions of the global displacement and potential fields into the
variational formulation. In the variational approach, since a laminated
plate is a body with piecewise constant material parameters that do not
have derivatives across an interface, the integrations in the variational
formulation have to be performed layer by layer. Interface continuity
conditions on traction and electric displacement are part of the stationary
conditions of the variational procedure. These conditions can be satisfied
exactly by three-dimensional solutions, or approximately by two-
dimensional solutions. Another approach for developing equations of
single-layered or laminated plates is to calculate moments of various
orders of the three-dimensional equations and fields by integrating them
through the plate thickness [40,41]. This is the approach we follow in
this section.

3.2.1 Classical theory

Consider the two-layer plate in Figure 3.2.1, which is asymmetric
about its middle surface.
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X3
Middle
surface
Electrodes Ceramic T P he h o=V
_ 9=0

Figure 3.2.1. A piezoelectric unimorph.

Instead of combining separate plate equations for the elastic and
piezoelectric layers by the interface continuity conditions, we begin with
an approximation of the global displacement and potential fields for both
layers. For coupled extension and classical flexure, the major terms of
the displacement field are:

~ 0
Uy (X, %5, X3,8) = u§ )(xl,xz,t),

~ ,,0
Uy (X),%,,X3,0) = ul® (x,,%,,t) —x3u§?1), 3.2.1H)
= 7,00 0
Uy (X), Xy X3, 1) = U (%), %, ,1) —x3u§,2),
where u(” are the middle surface extensional displacements, and u.” is
the middle surface flexural displacement. The strains corresponding to
Equation (3.2.1) are

_,,(0 0 _ .0 (0)
S, = “1(,\) - x3“§,1)1a S, = Urs = X3U3 35

(0) (0) (0) (3:22)
281, =8¢ =up; +uy) —2x3u5),.
For the ceramic plate which is transversely isotropic, we have
Sy =syly + 51, + 51315 +dy By,

S = 56615
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where s¢ = 2(s11-512) and E; = -V/h.. For a thin plate we make the stress
relaxation
T, =0. (3.2.4)

Under Equation (3.2.4), Equation (3.2.3) can be inverted to give

T, =cfiS, +ch S, —ef|E;,

T, =chS, +ch\S, —efE;, (3.2.5)

Tiy = cSs,
where

P _ 7o _ 2 2
ch=suld, oy ==sp/A, A=s—sp,,

(3.2.6)
efy =dy /(s +81,), ¢l =1/s6 =(chi —ch) /2.
- Then the relevant electric constitutive relation takes the form

D, =d, (T, +T,) + £, E
3 psn ) 33l G27)

=e5 (S, +5,) +eLE;,

where

£l = &5, —2d;el). (3.2.8)

Equation (3.2.7) is useful when the charge or current on the electrodes at
the major surfaces of the ceramic plate needs to be calculated.

For the elastic metal layer that is isotropic, we use a hat to indicate
its material parameters. Using a method similar to the derivation of
Equation (3.2.5), we have

T, =i, +¢hS,,

T, =&88, +é8S,, (3.2.9)
_ap

T}, = Cg6Ss

where

(3.2.10)
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With Equations (3.2.5) and (3.2.9), we calculate the plate extensional
resultants as

0
L
0 0
= allul( 1) +"127"( ) +b”u§ 1)1 +b12u3 2 —he}Es,

(3.2.11)
0 0
_alzul(l) +a“u( ) +b 2“§ 1)1 +b 1”3 22 —h.e}\E;,
0
= f T12dx3
_ 0 (© 0
= dgg (ul( 2) +u;, 1))Jr 2b66u§ 1)2=
where
a, =chh, +¢hh,, ay,=chh, +chh,,
ags = Césh, +Cish,, = (ay —ay)/2,
1 A 1 A 3.2.12
by, ='2'(clpl —clpl)hchm’ by, =5(cl,; _CIPZ)hchm’ ( )

1 n
bes =E(c& —Cés )hchm =(b;; — b))/ 2.

In obtaining Equation (3.2.11) we have made the usual approximation
that in the thin ceramic layer the electric field E; is essentially
independent of x; [3]. Similarly, the plate bending and twisting moments
are given by

1
= [lthxsd’%
0 0 0
=_1’11’411 blZu( ) 711”§ 1)1 712u§,2)2 +h.h,e5E;,
1
2(2) = f Ty xdx,

0 0 y4
=_b2u11 _blugz) 712”§1)1 711”322+hh ey £,

12 = f Ty xydx

0 0 0
= ~bgq (u( ) +u( )) 2766u§,1)2’

(3.2.13)
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m c''m

12 12
P AP

o =222 +3hch,3,)+‘;£(h§; +31%h,) (3.2.14)
p AP

oo = (12 + 30t (] + 302, )= Gy = 1) 2.

For the plate equations of motion for extension and flexure, instead of
using the variational principle, we integrate the three-dimensional
equations of motion through the plate thickness

1
T +[T 1% = (0o, + Pl ViY +=(0p = P ) Fyils
abla [T, 12, = (p. Py, Vi, 2(P Pn) 3h (3.2.15)

T(O) +[T33]’-l-h = (pchc + pmhm )ug())

al,a

The second term on the right hand side of Equation (3.2.15); is in fact
due to the first-order displacement u(" = -u{"

A 3, and is usually smaller
than the first term because it depends on the difference of the mass
densities and it has a spatial derivative. The classical theory for flexure is
for long waves with small wave numbers. A spatial derivative is
effectively a multiplication by the small wave number. The plate moment
equations are obtained by integrating the product of the three-

dimensional equations of motion and x; through the plate thickness. This
gives the plate transverse shear resultants 7 in terms of the moment
resultants

1 .
TS, — T8 +[x:T3, 1%, = G Yhh i . (3.2.16)

In Equation (3.2.16) the rotatory inertia has been neglected for classical
flexure. The surface load in this equation is neglected below.

In summary, we have the two-dimensional equations of extension
and flexure (3.2.15), constitutive relations (3.2.11) and (3.2.13), shear
force-moment relation (3.2.16), and strain-displacement relations (3.2.2).
With successive substitutions, Equation (3.2.15) can be written as the

following equations for ul(o) , u§°’ , and u§°):
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il

ag Vu® + ;“12 V(V - u®) + 5, V(V2u)

h
~hef VE; +[T; e + Tpe, |,
=(p.h, + pmhm)ii(o) + —l—(pc - Pk, Vii?, (3.2.17)
-1, V?V2u” — b, V}(V- u<°>) + bbb VE, + (L,
=(pchc +pm )u(O) (pc _pm)hchmv'ii(())

where
(0) = u(o)l + ug )12
(3.2.18)
V=i, +i,0,, V*=06]+8a.

At the two-dimensional boundary of a plate with an in-plane unit exterior
normal n and an in-plane unit tangent s, we may prescribe

TY  or u,(,o), 7O or 4

nn ns

T, (°)+T D or u§°), T or u§°,?

ns,s hn

b

(3.2.19)

3.2.2 Stress function formulation for static problems

For static problems, it is often convenient to use a stress function for
the extensional part of the problem. Consider the case of [T},]", =0.
The static form of Equation (3.2.15), becomes

T, =0, (3.2.20)

which can be identically satisfied by the introduction of a stress function
w through

TI(IO) =Y 1> Tz(zo) =¥V Tl(zo) =V¥i- (3.2.21)
Then, from Equation (3.2.11)
Vo= a11”1(1) + alzu(o) +b 1”3 +b 2”3 % —h.eh Es,
Yu= alzul(l) + anugoz) + b12u§01)1 + blluS » —hef E;, (3.2.22)

0 0 0
—W 12 =0 (“1(,2) + ug,l)) + 2bgg u§,1)2-
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Equation (3.2.22) can be inverted for

o ____ % an
U, =—— TVt TV
a, —ap an —dap
p
ay by —apbyy © by ~apbyy (o) h.e3, E
T U T, Wy v L3,
an —ap a;p —dy ay +ap
(0 _ __ 9 9
U o =— e Vi 2 — gl Vo
2 -
1~ 11~ 9% (3.2.23)
p
ay by, —apby © _ by —anby h.e3)
- 2 2 Ui — 2 2 3n T E35
apn —ap ay —ap a, t+ap
© L0 ___1 2bes (o)
Uy YUy =——VW g ——U3]p
66 g6
_ 2 _ 2(by, —byy) (o)
= VW U3
a —4ap apy —ap

Substituting Equation (3.2.23) into the following compatibility equation:

0 0 0 0
(ul(,l)),22 + (ug,z)),u = ("1(,2) + ug,l)),lz ) (3.2.24)
we obtain
7 Vi b vhaO P grp 2.25
anVvy—oyVvu; + ;3 =0, (3.2.25)
ay tap
where
— apn T ay by —apby,
ay=———7, by=—5—75—. (3.2.26)
ay —ap an —ap

Substitution of Equation (3.2.23) into the moment expressions in
Equation (3.2.13) gives

D_ = .0 = (0 1 T T

Tl(l) = _711u§,1)1 —7’12“§,2)2 _bn'//,n —b12'//,22 +h,hef E;,
1 = 0 = .0 i T -

Tz(z) = “712“§,1)1 “711u§,2)2 ‘blz‘//,u —bn'//,zz +h,he; E;, (3.2.27)
1 = O T

Tl(z) = _27661"?5,1)2 _b66‘//,12’
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where

_ all(b121 +b5) — 2a,,b,,by,

711_711 alzl_alzz
= . 2ay,b,by, — a12(b121 + b122)
2= 7 2 )
ay —ap
( 5 (3.2.28)
= b -5 = +b
2766=711_712_'—'1—12)—a hm=hm—b“ 2
a, — G ay +ap,
— a,, b, — a;b -
B, =12 122 121 0 B =_b11 by, _
a —ap a —ap
Then Equation (3.2.15), takes the following form:
7, VU ~ b, Vi + b h e, VE; + [T, ], =0. (3.2.29)

In this stress function formulation the equations that govern w and u "

are Equations (3.2.25) and (3.2.29).
3.2.3 A circular plate under a uniform load

As an example we consider circular plates under axi-symmetric loads.
For axi-symmetric problems in polar coordinates, we have

ot ,28 19 128

Vie— 2 — - + ,
ort rar® rroa? ror

@ _19¥

" ror’

N T
T = _7llu§?r)r —'}::%”g?r) —byw —%W,r +hyh.ef B, (3.2.30)

1 7u. o - . bu T T
To(a) = _—;—ug,r) —?’12”( ) 'T'//,r —blz‘//,rr +h,h.e5E,,

3,rr
1 1 1
oy 119

7O —
3r or >
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First consider a circular plate of a radius R under a uniform pressure
[T 3 ]fh =gq, (see Figure 3.2.2). The plate is simply supported at the edge.
In the radial direction it is allowed to undergo extension freely.

Figure 3.2.2. A circular unimorph under a uniform load p.

The problem is axi-symmetric. The boundary value problem is
“FuV'u? -5, V'y +q, =0, r<R,
a,Viy b, V'u® =0, r<Rg,
T =0, r=R,
W =0, r=R
TV =0, r=R,
all fields are finite, » =0.

(3.2.31)

Note that E; appears in Equation (3.2.31)s through Equation (3.2.30)s.
The solution is determined as

u? = SL0r' + OR (4’ + 4R + AE(R -r7),  (32.32)

v =%‘—Q(r4 -2R*r?), (3.2.33)
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where

o
g=———=.
16(@, 7,1 + ;1)
dayyytanyn + 2b1 +2by,b;,
2(7 +712)
_Sanyu +anin + 4bj; +4by by,
4V +12)
thceﬁfl
27 + 7))
For numerical results we consider PZT-5H for the ceramic plate. For the
metal ]glate we consider stainless steel with Young’s modulus E =
20x10" Pa, shear modulus G = 74 GPa, mass density p,, = 8.06x10"
kg/m®, and Poisson’s ratio v = 0.313. Figure 3.2.3 shows the deflection
under p for different E;. By applying a different electric field, the

deflection of the plate can be controlled. The dotted lines are from a
finite element numerical analysis by ANSYS for comparison.

AI—_‘ >

(3.2.34)
A2

k4

E 4=0 V) 4.0E-06 T 4,9 (m)

E =55 V/mm

r/R

.......

-1.SE+00  -1.0EX00%: 1.5E+00
\ -2.0E-06 -
_ -3.0E-06 -
"-.;§.0E-06 + E3=110 V/mm

3 ‘0E=-06: .

E ;=220 V/mm -6.0E-06™
-7.0E-06 -

Figure 3.2.3. Deflection under p for different Es. goTR* =2 N, h,=0.4
mm, A, =0.15 mm, R = 12.7 mm.

www.iran-mavad.com
A ga Gpadiga 5 GLisadil as e



Laminated Plates and Plates on Substrates 143

3.2.4 A circular plate under a concentrated load

Next consider a simply supported circular plate under a concentrated
load P at the center (see Figure 3.2.4).

. — %

1

]

1< ~
‘\

Figure 3.2.4. A circuit unimorph under a concentrated load P.

The boundary value problem is
7, V*'u® b, V' + PS(r)=0, r<R,
a, V' -b,V'u® =0, r<R,
T® =0, r=R,

(3.2.35)
u® =0, r=R,
TV =0, r=R,
all fields are finite, » =0,
where J(r) is the Dirac delta function. The solution is found to be
u® = B, Pr’Inr + P(B,r® + B,R*)+ B,E,(R* - r?), (3.236)
w = Bs Pr’Inr + B, Pr’, o
where
B, = 2(511 +Ez)’
> > b +by
B, =, (3+ 21nR)+}/12 (1+2IDR)]T—_—
Mt

—[8,(3+2InR)+ by, (1+2In R)]+(1+2In R)(;, + by,),
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B, =-2nR(B, +b,)+ (7}, (3+2In R)+ 7, (1+ 2In R) 2 A2
— _ mthe
+[B,(3+2InR)+ b, (1+2In R)]- (1+2In R) (3, +b},),
B =- thceﬁ

2(711 +7712),
By =2(71 + 71)5
B =—(1+2InR)(7;, + 71, )>
_ P
1671'(5127711 __117712).

M|

(3.2.37)

6.0E-06 T 4, m)

E ;=0 Vimm E 3=55 V/mm

.....

,,,,,,

r/R

-L5E+00  -1.0ENDO ~=5-0E-01"""0.0B+00 "5:0B-01" 1.5E+00

-2.0E-06 -

-\‘429%06 .T "';'
E3=220 V/mm

-6.0E-06

Figure 3.2.5 Deflection under P for different E5. P = 1 N, h.= 0.4 mm, h,,
=0.15 mm, R = 12.7 mm.

Figure 3.2.5 shows the deflection under P for different E;. The behaviors
of the curves in Figures 3.2.3 and 3.2.5 are similar. The deflection
produced under a concentrated load P = 1 N is comparable to the
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deflection under a uniform load of 7R’gy = 2 N. This is as expected
because a concentrated load at the center is more effective in producing
deflection.

3.3 Laminated Piezoelectric Plates

In this section we study motions of multi-layered piezoelectric plate
laminates in general. Two-dimensional equations for laminated plates are
derived by power series expansions, and are truncated to a first-order
theory for coupled extension, flexure and thickness-shear.

3.3.1 Power series expansion

Consider an N-layer piezoelectric plate of total thickness 2A with the
x3 axis normal to the plate (see Figure 3.3.1). The two plate major
surfaces and the N-1 interfaces are sequentially determined by x3 = -h =
ho, hla vy hN—ls and hN = h.

A X3
hy=nh
hy.y
——— T ;
hy
ho=-h

Figure 3.3.1. A laminated piezoelectric plate.

First we expand the mechanical displacement and electric potential into
power series in x3:

w =y xju, p=> xj¢". (3.3.1)
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Then

Zx"S;”, E, =) xE®", (3.3.2)
where

S(") u(")+u(")+ n+1)(J, u("“)+5 u,("“) ,
[ (n+1)(6;5 3 )] (3.3.3)

EP = —¢,£"> ~(n+ 185",

For the two-dimensional equations of motion and charge, we multiply

T, =pii,, D, =0 (3.3.4)

JisJ

by x;, integrate the resulting equations across the thickness of the I-th
layer from k. to h;, sum over I, and make use of the interface continuity
conditions of the traction vector and the normal component of the

electric displacement. We then obtain the following n-th order field
equations

T =Ty ™D + FD =% pmmigm,

m (3.3.5)
DY —nD{"™ + D™ =0,
where
™, D} = f' T, , D, }x!dx, Zj" (T, , D, }xldxs,
Fj(n) [xaT.n] —h> D™ —[x3D3] —h> (3.3.6)

Substitution of the three-dimensional constitutive relations of the I-th
layer

_ 1
T, _cijkISkl —eyEy,

; ) (3.3.7
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into Equation (3.3.6); gives the plate constitutive equations of order n as
follows

(") _ Z(CI%M)S(M) _ el(c;'_l‘rn)EIEm))’

D(n) _ Z(eézwn) §m _ (m+n)E(m))’ (3.3.8)
where
(m+n) hy
ykl z I yk1x3 x3 dx3 N
el(c:jnm) = z _[ ekt X3 %3 dx;, (3.3.9

g™" = Zr Ehxy %3 dxy.

3.3.2 First-order theory

For a first-order plate theory of coupled extensional, flexural and
thickness-shear motions we make the following truncation of Equation
(3.3.1):

~ ,,(0 1 2,.(2
u; =ui( )(xlax2,t)+x3ui()(xl’xZ’t)+x3ui( )(xlst’t),

(3.3.10)
$= ¢(0) (%, %5,0) + x3¢(l)(x1 2 Xg51),

m

where u;” and u(z) will be eliminated by stress relaxations. The strains

and electric fields are

S, =80 +x,80, p=12,6,

(3.3.11)
E zE® +qEP,
where the zero- and first-order strains are
SO =u4®, SO =4, SO =ud,
‘ N (3.3.12)

0 0 1 0 0 1 0 0 0
SO =uQ 1, S =u v, SO =ul? 44,
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and
SO =ul, SO =ul), SO =24,
SO =ul) +2uP =0, S =ul} +2u =0, (3.3.13)
SO =4 +u).

We note that S{” and S{" are involved with " and u{”, which are to

be eliminated. S}l) and S§1) are neglected as an approximation. The
zero- and first-order electric fields are given by

E® =40, EP =—¢D, E® =-4", (3.3.14)
and
EP =-¢P, EP =—¢9, EP=0. (3.3.15)

The zero- and first-order equations of motion and charge are

ab,a

B —h
Loy + R = Zp’Kh, =y iy + =i

Tiu + FY = Zp [y — )i
o B} —h}, K -h
TO _70O L O _ ! (0) L (l) (3.3.16)
aba —43p b IZ}:P [ > 3 1
D +D® =0
a,a ’
1 0 i
DO -D» + DV =0.
The zero-order plate constitutive relations are
0) ¢ (0 E© 1 a
I,0 = (ciaSi ~ el ED) + (cS) — e ED),

D(O) = DSV + P ED) + (eDSY + 5P ED),

(3.3.17)
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where

0 —1 0
z_(;k;—Z(hl 1—1)Cg'k1’ el(cy) Z(h hll)eky5

@—Zw-,ow
and
o h - h o h2 h’
Coir = Z( C ki » _Z( ky’
(l) z(hz h121 —-1

The first-order constitutive relations are
1 1 0 0 2 1 1
TO = (cDSQ - eQED) +(cASP —ePED),
DO = (0SD + sPED) + (D SV +sPED),

where
@ = h1 h13 1N @ _ h3 h
Co = Z( ykl s C = Z( ky >

3
815-2) Z(hl h] 1 —1

149

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

Note that in Equations (3.3.18), (3.3.19) and (3.3.21) we have used the
following material constants after the simpler version of stress relaxation

(see Equations (2.4.13) through (2.4.15)):

-1 _ 1 1 I
Ciimt = Cijpr — Cjja3Ca3u /€3333,
-1 _ 1 I !
Cpy = ekij ~ €x33C33; / €33335

-] _
£y =g, +e133‘3/33/‘33333

(3.3.22)

Then »{" and #{” will not appear in the constitutive relations in
Equations (3.3.17) and (3.3.20). A more sophisticated stress relaxation
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using 7)Y’ = 0 and Ty, Y = 0 to eliminate S and S§1) (and hence "

and uﬁ")) can be performed. Two shear correction factors ki and k; can

be introduced by replacing the following zero-order strains:
SO 5 5,50, 8O - «,8 (3.3.23)

to correct the two fundamental thickness-shear resonant frequencies.

In summary, we have the two-dimensional equations of motion and
charge (3.3.16), constitutive relations (3.3.17) and (3.3.20), and strains
and electric fields (3.3.12) through (3.3.15). With successive
substitutions, seven equations for #(”, 4", ¢ and ¢ can be obtained.

At the boundary of a plate with an in-plane unit exterior normal n and an
in-plane unit tangent s, we may prescribe

Tn(,?) or u,(,o), Tn(so) or ugo), Tn(3°) or u§°)

T or wl, TP or ul, (3.3.24)
D@ or ¢ DO or ¢,

H

For a laminated plate, extension and flexure are usually coupled unless
the plate is laminated symmetrically about its middle surface.

3.4 A Plate on a Substrate

A thin film on the surface of a half-space or at the interface between
two half-spaces is a common structure in device applications. In this case,
for long waves, the film can be modeled by the two-dimensional
equations [42], and the half-space(s) by the three-dimensional equations.
In this section we analyze two problems of this type.

3.4.1 A Piezoelectric film on an elastic half-space

First consider a piezoelectric film on an elastic half-space (see
Figure 3.4.1) [43]. This problem is useful for understanding the behavior
of piezoelectric actuators. The film is modeled by the equations for the
extensional deformation of thin plates, and the substrate is governed by
the equations of elasticity. The film is of ceramics with thickness poling,
and is partially electroded. The thick lines represent electrodes. The
substrate is isotropic.
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X3
Electrodes

Piezoelectric
film

Elastic substrate
21

Figure 3.4.1. A partially electroded piezoelectric film on an elastic
substrate.

We study plane strain deformations with #, = 0 and d/dx, = 0. The top
and bottom electrodes on the film are under given applied electric
potentials +772. Then for the electroded portion we have ¢® =0 and ¢(1)

= V/2h. In the unelectroded portions, since ¢®(+a) = 0 and ¢,(1°) xH=0,

it can be concluded that ¢(0) = (. However, ¢(1) remains unknown in the
unelectroded portions and is coupled to the mechanical fields. Denote the
shear stress between the film and the substrate by 7(x;) for |x;| < /. Since
the film is assumed to be very thin, the continuity of the tangential
displacement at the interface implies that the tangential surface
displacement of the substrate is also #®”(x,). Then we have the
following relation for the surface strain due to a surface distribution of
shear stress 7 [43]

2
Y (x,) = —Z(I;EV ) f 1 xr(f)s ds , (3.4.1)
1

where E is the Young’s modulus and v is the Poisson’s ratio of the
substrate. Equation (3.4.1) is from the theory of elasticity. For the

extensional force T\ in the film we have

T =2h(cfufy +ef¢®). (3.42)
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7" must satisfy the following edge conditions

TN =0. (3.4.3)
The equation of motion of the film is
=T . (3.4.4)

Integrating Equation (3.4.4) from -/ to x,;, using Equation (3.4.3), we
obtain

J', (s)ds = T (x,) . (3.4.5)

Substituting Equation (3.4.1) into Equation (3.4.2) and the resulting
expression into Equation (3.4.5), we have the following integral equation
for7:

Xy p —y?
_[ o()ds + 2hcf2(1-v*) J-I 7(s) ds
-l nE -l xS (3.4.6)

=2hef O (x,), |x <L
For the electric potential we have
W {V/2h, | x, I<a,

(3.4.7)
unknown, a<|x; |</,

where ¢ in the unelectroded portions is part of the unknowns and has to
be obtained by solving simultaneous equations. The additional equation
for determining ¢V takes the following form with the substitution of
Equation (3.4.1) into Equation (3.1.14) and 4’ replaced by #:

2hef 2(1-v?) Il °s) 4o
nE =

28, P40
='3_511¢,11_2h€33¢ , a<|xl<l,

f oS (3.4.8)

which is coupled to 7. Equation (3.4.8) is an integro-differential equation
to which we need to impose the following boundary conditions:

¢Pa)=Vv/2h ¢PEDH=0. (34.9)
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We have obtained a pair of coupled integro-differential equations (3.4.6)
and (3.4.8) for determining (x;) and ¢(1)(x1), with boundary conditions
(3.4.9). Equation (3.4.8) is over the region of the unelectroded portions
of the film only, where ¢" is unknown.

3.4.1.1 Rigid substrate

First consider the special case of a fully electroded film on a rigid
substrate. We have u(” = 0. Because of symmetry we only consider half
of the film with 0 <x; </. For a fully electroded film with @ =/, we have

¢® =V /2h over the whole film. Equation (3.4.2) then implies that the

film extensional force ;" has a constant value of £,V along the film.
Then Equation (3.4.4) further implies that the shear stress 7 is zero under
the film. However, Equation (3.4.3) requires that Tl(lo) must vanish at
both ends of the film. This is possible only when two concentrated shear
forces of equal magnitude efV and opposite in direction are present at

both ends of the film. Mathematically, the shear stress distribution can be
represented by

o(x,) = -l V[5(x, = 1) - 8(x, +1)], (3.4.10)

where &x,) is the Dirac delta function.
A slightly more general case is when a partially electroded film is on
a rigid substrate. In this case from Equations (3.4.6) and (3.4.8) we have

efi2hgV -7 =0,

3 (3.4.11)

for which the boundary conditions in Equation (3.4.9) still apply. From
Equation (3.4.11), and Equation (3.4.9), the following solution for ¢
can be obtained

¢(1)n{ V/2h, 0<x, <a,

Gexp[-£(x, —a)]+ H exp[&(x, —a)], a<x, <I, (3.4.12)
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523 3f§_ G= 4
p’ - ’
h\/ & 2H[1+ exp(-2£b)] (3.4.13)

exp(-26b),

where

_ 4
 2H[1+ exp(—2ED)

and b = /-a. Substitution of Equation (3.4.12) into Equation (3.4.11),
gives the shear stress distribution

0, O0<x <a,
D I (TR
T=1 17 p— gb){ exp[-§(x; —a] (3.4.14)

+exp(—2&b)explé(x, —al}, a<x <l

Under the electroded portion there is no shear stress. In the unelectroded
portion the shear stress decays exponentially with %(/) = 0. The important
difference between Equations (3.4.14) and (3.4.10) is that one predicts a
distribution of finite shear stresses while the other has a singular
distribution of the delta function. This shows the advantage of partially
electroded actuators in reducing stress concentration. The total shear
force predicted by Equation (3.4.14) can be obtained by integrating the
shear stress over the unelectroded region (a, I), which yields

P
esV

- m[‘l + 2exp(=6b) — exp(-25b)]. (3.4.15)

For the equations of a thin film to be valid in the unelectroded portion,
the length of the unelectroded portion b has to be much larger than the
thickness 24. Then it can be seen from Equation (3.4.13), that in this case
exp(—&b) << 1. If we neglect exp(—£b) compared to one in the above
expressions, we obtain the following simpler and physically more
revealing expressions:

V/2h, 0<x <a,
¢(1) =

%exp[—g‘(xl -a)l, a<x<l,

(3.4.16)
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0, O<x <a,
T= » (3.417)
—e &V exp[-$(x, —a)], a<x <],
Q=-ellV. (3.4.18)

The shear stress distributions given by Equations (3.4.10) and (3.4.17)
are shown qualitatively in Figure 3.4.2 where a minus sign has been
dropped. The figure shows that the shear stress distribution under a
partially electroded film is much less concentrated than a fully electroded
film. From Equation (3.4.18) we can see that the total shear force is
about the same as Equation (3.4.10), being equal to the tension (or
contraction) force in the unelectroded portion of the film.

oo (Delta function)

» X1

Figure 3.4.2. Shear stress distribution under a piezoelectric film on a
rigid substrate. a = I fully electroded. a < I: partially electroded.

3.4.1.2 Compliant substrate

Next consider the special case when the piezoelectric film is fully
electroded and is much stiffer than the substrate. With the introduction of
the following small, dimensionless parameter:

E

Ame—em—— 3.4.19
ch2(1-v?) ( )

www.iran-mavad.com
2 ge (padige 5 Olsadils g e



156 Mechanics of Piezoelectric Structures

and the change of the integration variable s = /¢, Equation (3.4.6) can be
written as

1t /@
_I, - = Mﬁ——ﬂzhf f®at, (3.4.20)

where we have denoted A7) = wlf), and ¢ = xi/l. We now seek the
following perturbation solution:

FO=r20+O@) +--. (3.4.21)
Substituting Equation (3.4.21) into (3.4.20), we obtain the following
zero- and first-order problems:
1 ©®
lj IO 4o,
Tl ¢—t
l J-l f(l) (t) _ el’
Tl g —t Ton 2h

(3.4.22)
I FO@)ar.

These equations are analytically solvable. Equation (3.4.22), is
homogeneous. A physically meaningful solution to Equation (3.3.22), is

FO@1)=0, which represents the situation that the substrate is

mechanically not resisting the deformation of the film. The first-order
solution from Equation (3.4.22), takes the form

1 14
Y = —eP
1) = j g_t( e (3.423)
or
z————————— ? —ds. 34.24
)= 2,”] i (3.4.24)

It can be verified that Equation (3.4.24) is an odd function and is singular
at x; = 2. The integration of 7 over (0,) is still finite to give the total
shear force. f®({) in Equation (3.4.23) is normalized and shown in
Figure 3.4.3. Comparison of Equations (3.4.24) and (3.4.10) shows that
for the case of fully electroded actuators, the shear stress distribution is
more concentrated when the substrate is stiffer than the film.
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Figure 3.4.3. Normalized shear stress zf  (¢) (—ef}V /2h).

3.4.1.3 Elastic substrate in general

In general we need to solve coupled integro-differential equations
(3.4.6) and (3.4.8). We divide the domain into elements and solve the
equations numerically. First we re-write Equations (3.4.6) and (3.4.8) as
follows:

L 7(s)ds + A fl ™) gy = er(x), |x<l, (3.4.25)
— = -5

x
and

/
le 7(s) ds =C®,, (x) - £5,0(x), a<|x|<l, (3.4.26)
-t X—5

where we have introduced the following for simplicity:

_ 2hch2(1-v?) B 2hel 2(1-v?)

4 , ,
7k 7k

- (3.4.27)
C =?51’{, ® =2hp", x=x,.
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158 Mechanics of Piezoelectric Structures

Then, we divide the whole interval (—/, /) into small segments with
length A,, i=1,2,3,..,N, where N (= 2N,+2N,) is the total number of

the segments, 2N, is the number for the electroded portion, and 2N, is the
number for the unelectroded portions (see Figure 3.4.4). One node is
placed on each element.

123 .. J i ... N-1
e B e B e e B s e L e g g e e e e e s e e e e e
11 v nd JO\ ~ fl Jl x
Nb Na Na Nb

Figure 3.4.4. Discretization of the domain (-/, /) into N (= 2N,+2N,)
small segments (elements).

The shear stress and electrostatic potential are approximated by
undetermined constants over each element. Let x = x, (i.e., at node i) for
i=1,2,3, ..., N, then the two integrals in Equation (3.4.25) can be
discretized as:

j[ (s)ds = Z L (s)ds = j:r A, (3.4.28)
- =1 J=1
7(s) il 7(s)
'[—/1 x,—sds=§-[ﬁj x,-—sd z-[ x—sdsrj
N x+la, N I e 1 ' (3.429)
_ 1 3 x, —(x;,=3A;)
_jZ:l:lnxi—sx,_lA —jz:l:ln| &, +‘A )’ Jo
J#i A Ji

ds can be shown

in which 7, =7(x,). The singular integral I

X —S
to vanish in the Cauchy-principal value sense and thus is excluded from
the summation. Using the above results, we can write the discretized
form of Equation (3.4.25) as:
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-34A)
AY 7. +4 ln T; =ef D,
Z ,Z‘ x; —(x +‘A) (3.4.30)
j#l
i=123,..,N,

where @, =®(x;) and a uniform length for all the elements has been
assumed (ie, A, =A, j=123,.,N). Notice that Dy, =@y .,
=..= @y ,,y =V, as given in Equation (3.4.7). There are a total of N

equations in Equation (3.4.30). Applying the central difference scheme,
we have

@ (x) =2 _2? 2, (3.431)
i=2,3,..,N,,N, +2N, +1,..,N —1.
Thus, the discretized form of Equation (3.4.26) is found to be
BZI A) (cp 20, + @, ) -5 ®
i x; —(x x, —(x, +1A) A) (3.4.32)
i=23,.,N,,Ny+N,+1,..,N-1],
in which
Dy, =Pu,.on, =V (3.4.33)

from condition (3.4.7) or (3.4.9), should be applied. There are only
2N, —2 equations in Equation (3.4.32). Two more equations are found

by enforcing the zero-slope boundary condition in Equation (3.4.9),
using the finite difference, that is,

O, =0,, Oy, =D,. (3.4.34)

There are a total of N + 2N, equations in Equations (3.4.30), (3.4.32)
and (3.4.34), which are used to solve for the N unknowns
7, (i=1,2,3,.,N) and 2N, unknowns @, , (i = 1,23,..., N,
Ny+2N,+1,..., N-1, N). Equations (3.4.30), (3.4.32) and (3.4.34) can be
written in a matrix form and solved for 7 and ® together or solved for
7 and @ separately using partitioning of the whole matrix. For
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160 Mechanics of Piezoelectric Structures

numerical results, we consider PZT-7A for the piezoelectric film. For
geometric parameters, we choose /=0.1m and /#=0.0025m. The
substrate is made of steel (£ =2.0x10"Pa, v=0.3). Numerical tests
show that ¥ =200 is sufficient and is thus used for all the following
calculations.

Figures 3.4.5 and 3.4.6 show the results for the shear stresses and
electric potentials, respectively, with the electroded region of three
different sizes. It is observed that the location of the peak value of shear
stress moves towards the edges of the film when a increases, as expected.
Since the shear stresses decay so rapidly, they essentially do not feel the
ends of the film in the cases shown with almost the same shear stress
distributions concentrated at different locations. Figure 3.4.5 suggests
that if a partially electroded actuator is used for the purpose of reducing
shear stress concentration, only very small portions in the order of about
five times the film thickness near the ends of the actuator need to be left
unelectroded. This provides some guidance for design.

1400 -~
[hnd i]

=050 1200 -
—-a-al=075 1000 -
—a—al}=0.90 800 1

600
400 -

T

-400
-600 -
-800 -

-1000 -

-1200 -

Shear Stress

4 400}
™o
x (m)

Figure 3.4.5. Shear stress distribution for different sizes of
the electroded area.
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03
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I

-0.1 -0.05 0 0.05 0.1
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Figure 3.4.6. Electric potential distributiosn for different sizes of the
electroded area.

From the numerical data of Figure 3.4.5, it is observed that the shear
stresses under the electrodes are not zero, but much smaller in value
compared with the peak values near the edges of the electroded area. To
illustrate this, the distributions of the shear stresses under the electrode
are plotted in Figure 3.4.7 for three substrates with decreasing Young’s
moduli. The shear stresses under the electrode are larger as the substrate
becomes softer, as also suggested by the comparison of Figures 3.4.2 and
3.4.3. However, the values of the shear stress under the electrode are still
several orders smaller than the overall peak values of the shear stress
right outside the edges of the electrode. Practically the shear stress under
the electrode can be neglected for many purposes. Since the shear stress
under the electrode is much smaller than the peak values right outside the
electrode, the shear stress is discontinuous at the ends of the electrode.
The discontinuity in the shear stress distribution is related to the thin film
model used.
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——E =2e11Pa
—&-E =2¢10 Pa
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Figure 3.4.7. Distributions of the shear stresses (x10°) under the

electrodes.

3.4.2 Piezoelectric surface waves guided by a thin elastic film

Consider the propagation of long, anti-plane (shear horizontal or SH)
surface waves over a piezoelectric half-space carrying a thin, non-
piezoelectric dielectric film (see Figure 3.4.8). The ceramic half-space is
poled in the x; direction.

Free space
. . /\
Dielectric 2h X
v 1
Polarized ceramics P >
ropagation
direction

X2

Figure 3.4.8. A ceramic half-space with a dielectric film.
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For the ceramic half-space, for motions of u;(x,,x,,#) and ¢(x;,x,,t),
the governing equations are [12,9]

— V2 = i ,
Caa ¥t = Pl (3.4.35)
Vi =0,
s
v=¢——u,, (3.4.36)
1
and
Ty =Cottz 5 +e15¥ 5,
T,, =Cyu,, +e ,
31 sy T EsY (3.4.37)
Dy =&y,
D, = —EnV¥ 2
where the piezoelectrically-stiffened shear constant is defined by
e’ e’
Cop =Cag + 2= (14 k}), ki =—21 (3.4.38)
&n €11Cys
For a surface wave solution we must have
U, >0, x, > +0, (3.4.39)
Consider the possibility of solutions in the following form:
=4 - j —t)),
U exp(—4,%, ) exp[i(&;x, )i (3.4.40)

v = Bexp(=& x)expli(&,x, — wt)],

where A and B are undetermined constants, and &, should be positive for
decaying behavior away from the surface. Equation (3.4.40), already
satisfies Equation (3.4.35),. For Equation (3.4.40), to satisfy Equation
(3.4.35); we must have

544(512 —522) = po’, (3.4.41)
which leads to the following expression for &;:
P’ 2

v
& = 512 I 512 (I-=)>0, (3.4.42)
Caq Vr

www.iran-mavad.com
2 ga (padige 5 Ol sadils g e



164 Mechanics of Piezoelectric Structures

where
2 —
2 _ 0 2 _Cua
Vi=—, Vp=—-. (3.4.43)
& P
The following are needed for prescribing boundary and continuity
conditions:

¢ = [Bexp(~£,x,) + -5 dexp(-&,x, )] expli(é,x, — at)],
11

Ty, = {dcy &, exp(=5;x,) (3.4.44)
+ )5BS, exp(=&;x, )lexp[i(&,x, - ar)],
D, = &,,B¢, exp(-¢,x, ) exp[i(5;x, — wr)].
Electric fields can also exist in the free space of x, <—-2h =0, which
is governed by
V=0, x,<0,
$—>0, x, >—oo0

(3.4.45)

A surface wave solution to Equation (3.4.45) is
¢ = Cexp(& x, )expli(&,x; — )], (3.4.46)
where C is an undetermined constant. From Equation (3.4.46), in the free
space
D, = —¢,&,Cexp(&,x,)expli(&,x, — awt)]. (3.4.47)
The film is assumed to be very thin in the sense that its thickness is
much smaller than the wavelength of the waves we are interested in. We
use a prime to indicate the elastic and dielectric constants as well as the
mass density of the film. Consider a film of a cubic crystal with m3m
symmetry. The elastic and dielectric constants are given by
¢y ¢, ¢, 0 0 O

!
¢, ¢, ¢5 O 0 0

' ' ' 0 0 0 6‘11 0 0
2 o fn 10 & 0| (3448
0 0 0 ¢, 0 0
, 0 0 ¢
0 0 0 0 cj 0

0 0 0 0 0

N
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For the film, we use the two-dimensional plate equations. This approach
was used in [42]. The lowest order effects of the film are governed by the
zero-order equations for extension. We have

T + Ty (% = 0) =Ty (x, = ~2k) = 2y,

ab,a

(3.4.49)
D) +Dy(x, =0)—D,(x, =—2h) =0, a,b=13.
The constitutive relations for the film are
TO =P 5O
Dr,.(o) = 8’5 125.0), r,s =135, (3.4.50)
where
ch=cl ~clcicl., v,w=246. (3.4.51)
The fields in the film are
uy = Aexpli(&x, — ax)], (3.4.52)

¢ = Cexpli(5x, — ax)).
Equation (3.4.52) already satisfies the continuity of the mechanical
displacement between the film and the ceramic half-space, and the
continuity of the electric potential between the film and the free space.
From Equation (3.4.50) we obtain:
T =2hcl ST =2hcfu?)
=2hcyi§ Aexpli(&x, — o)),
D =2he}\E, = -2he]\¢,
=—2he&1i§,C expli(&x, — ai)].

Substitution of Equations (3.4.44), (3.4.46), (3.4.47) and (3.4.53) into the
continuity condition of the electric potential between the ceramic half-
space and the film, Equation (3.4.49), for b = 3, and Equation (3.4.49),
yields

(3.4.53)
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B+35 4=,
tn
1 - ]
- cf4§12A ‘E(Acufz +esBE) =—p'o’4, (3.4.54)

, 1
&n §12C +E(311351 +£,6,C)=0,

which is a system of linear, homogeneous equations for A, B and C. For
nontrivial solutions the determinant of the coefficient matrix has to
vanish

b 1 -1
‘o

p'o? —cl, & —c—;‘gi —% 0 =0,  (34.55)
e

which determines the dispersion relation, a relation between @ and &;, of
the surface wave. In terms of the surface wave speed v = w/¢& , Equation

(3.4.55) can be written in the following form:

2 ¥4 2 _ ]'C'Z
[%-1]%4—2}151 - /1—%— +k2 = 13 . (3.4.56)
vr Cu vr 1+ 50 4 8‘—151 2h

€u én
where Equation (3.4.42) has been used, and
r _ 2
pp=fi g G (3.4.57)
E1cu

When h = 0, i.e., the dielectric film does not exist, Equation (3.4.56)
reduces to

]?4
v = v;[l ——L-z-], (3.4.58)
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which is the speed of the well-known Bleustein-Gulyaev piezoelectric
surface wave. When k3 =0, i.e., the half-space is nonpiezoelectric,

electromechanical coupling disappears and the wave is pure elastic. In
this case, Equation (3.4.56) reduces to

2 P 2
v c v
[‘7 - 1]?44_21151 — J1-—=0, (3.4.59)

Vr Cay Vr

which is the equation that determines the speed of Love wave (an anti-
plane surface wave in an elastic half-space carrying an elastic layer)
in the limit when the film is very thin compared to the wavelength
(&ih << 1).
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Chapter 4
Nonlinear Effects in Electroelastic Plates

In this chapter we consider the effects of initial or biasing fields in an
electroelastic plate. In this case the three-dimensional equations are
linear (see Section 3 of Chapter 1), but they can only be derived from the
nonlinear equations. We will also study nonlinear effects in an
electroelastic plate in thickness-shear vibrations with relatively large
amplitude.

4.1 Plates under Biasing Fields
Two-dimensional equations for elastic and electroelastic plates under
biasing fields were studied in [44-47]. The derivation below is from [46].

Consider an electroelastic plate in the reference configuration with the X3
axis along the plate normal, as shown in Figure 4.1.1.

TXa
. |
) 4’ X
S

S

X N

Figure 4.1.1. The reference configuration of an electroelastic plate and
coordinate system.

4.1.1 First-order theory

For a first-order theory we make the following expansions of the
incremental displacement and electric potential:

168

www.iran-mavad.com
A se Gpudign 5 Qlasadily a0



Nonlinear Effects in Electroelastic Plates 169

urEu§0)(X1sX2,t)+X3u9)(X13X2at)+X%“;D(Xl,Xz,t)a @.1.1)
¢' =0 (X, Xy, 0+ X,V (X, X,00),

where #{" and u§2) will be either eliminated by stress relaxation or

n

neglected later. From Equation (4.1.1) we calculate the displacement
gradients and electric ﬁeld as

Uy = (XI’XZat)+X3U (X, X,,0),

) 4.1.2)
EL :f( )(Xanaf)"‘X3££1)(X1,X2,t),
where
0 0 0 0 0 1
U()~u1(1)9 Ul(z)_ul(z)’ U1(3)=”()
0 0 0 0 1)
UR =uf), UQ =ul, UY =ud,
0y _ . (0 0 _ .0 0 _ .M
U =i, UP = UP =, i
UD =u®, UD =40, U =20 =0,
1 1 1 1 1 2) o
U =), U =ull, OB =2 =0,
UP =uf) =0, U =uf) =0, UY =2u,
) 0 0 0 0 1
EO = —g®, 0 =40, E® =4O,
(4.1.4)

E(l) ¢(1) fgl) ¢(1) fgl) =0.
In Equation (4.1.3), as an approximation, we have neglected ugll) , uglg ,
u1(2 and u(z) . Substituting Equation (4.1.1) into the variational
formulation in Equation (1.3.12), for independent variations of é'ul(o),
ul®, ul”, ul®, oul®, 64 and 54", we obtain the following two-

dimensional equations of motion and electrostatics:

KO +FO =2phii?, a=1,2,3,

2ph° .
Ku~K@D+FP =B, a=12,

(4.1.5)
2O, +0® =0,

oY, -0 + " =0,
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170 Mechanics of Piezoelectric Structures

where we have introduced an index convention that index 4 assumes 1
and 2 but not 3. Equations (4.1.5); for ¢ = 1, 2 are the equations for
extension, and for & = 3 the equation for flexure. Equations (4.1.5), are
for shear in the X; and X, directions. In Equation (4.1.5) the plate
resultants and surface loads of various orders are defined by

h
K& oy = Kiws Dy} X1 dX,,
(KOO0 = [ {Kka» Dy IX7dX, @16

F® =[xk}, 1, o =[X;D}1",, n=0,],

where K{) represent plate extensional and shearing forces, and bending

and twisting moments. For thin plates we make the following stress
relaxation:

Kgs =Gy, 4, — RL33£;, =0. @4.1.7)
From Equation (4.1.7) we can solve for u; 3, with the result
~1

3333

Usz = [G33L7u7,L = Gyp3tt3 3 — RL33E2] . (4.1.8)

u33 has been eliminated from the right hand side of Equation (4.1.8)
because when L=y =3 the two terms containing ;3 cancel each other

out. Substituting Equation (4.1.8) back into the three-dimensional
constitutive relations in Equation (1.3.6), we obtain

K}m :_(_;KaL}'uy,L : ELKaqsll,a 4.1.9)
(D}< =Ry, U, + LKLEJI.,
where the relaxed constants are
(_;Kal,y = GKaLy - GKa33G33L7 / G333,
‘EKL;' = RKLy - RK33G33L7 ! G333, (4.1.10)
Ly, = Ly + RexRysy [ Gagss.

In Equation (4.1.9) K1, =0 is satisfied and its right hand side does not

contain u33. From Equation (4.1.6),, with the substitution of Equations
(4.1.9) and (4.1.2), we obtain the plate constitutive relations as
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KD =G0, U® +GP, UV - RO,E® - RO, ED,

1 1 0 2 1 1 0 2 1
K =G, U +G,UY - R, - RD, 0,

(0) © 7O 4 pO O L [OF (0) W g (1) 4.1.11)
RKL;/U RKLyU +L L
! D 70 2) 770 1) (0 2) (i
o =RY UY + RAUP + [RE® + IDED,
where
(G- Ri)» Lt}
4.1.12)

= j—h {EKaL}"EKL;"ZKL}X;pr n=20,1,2.

Physically, GKaL, represent the plate flexural and extensional stiffness,

etc. Because of the use of the relaxed material constants in Equation
4.1.9), u(') and u(z) do not appear on the right hand sides of Equation

(4.1.11). A more sophisticated stress relaxation using K&’ = 0 and K 3(3)

= 0 to eliminate Uy and U{) (and hence u#{ and #{”) can be

performed. Equation (4.1.11) shows that extension and bending may be
coupled due to biasing fields. In a plate theory only the moments of
various orders of the biasing fields matter, not the exact three-
dimensional distributions of the biasing fields. Shear correction factors
may be introduced but they are not pursued here.

In summary, we have obtained the two-dimensional equations of
motion and electrostatics (4.1.5), constitutive relations (4.1.11), and the
displacement gradients (4.1.3) and electric fields (4.1.4). With successive
substitutions, Equations (4.1.5) can be written as seven equations for the

seven unknowns of #”, u{”, (¥, u®, 4", ¢¥, and ¢. To these
equations the proper forms of boundary conditions can be determined
from the variational formulation in Equation (1.3.12). At the boundary of
a plate with a unit exterior normal N and a unit tangent S, we need to
prescribe

K,(\?A), or uﬁ?), KS’S) or ugo), K,(&) or u§°),
K@ or u, KQ or uf, (4.1.13)

oy or ¢, o or ¢¥.
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4.1.2 Buckling of ceramic plates

One application of the equations for a plate under biasing fields is
the buckling analysis of thin plates. For the classical description of the
buckling phenomenon, the electroelastic counterpart of the initial stress
theory in elasticity is sufficient, which is a special case of the theory for
small fields superposed on a bias. The effective material constants of
such a theory are given in Equation (1.3.20). We perform buckling
analysis of a few piezoelectric plates and bimorphs made from polarized
ceramics [46]. Three cases corresponding to Figure 4.1.2 are considered.
We limit our discussion to plane strain analysis with #, = 0 and d/d.X; = 0.
For all three cases the two major surfaces of the plate at X; = +h are
traction-free and are unelectroded, with vanishing normal electric
displacement. The plates are mechanically simply supported at their end
faces at X;= 0 and X;= /. The electrical end conditions will be specified
later in each specific case. The two ends of the plates are loaded by the
following axial force per unit length in the X, direction, which is
responsible for the biasing deformation:

p=2kK,. (4.1.14)
A
p /P X, p
<+ 2h —>p —> —>
) 4 /
WX (@
P X,
«— <> h —p P S __p>
O «— P l
% ®)
A
X, P
o KX te . —»
¢ v P !
©
Figure 4.1.2. Simply supported ceramic plates of length / and
thickness 24.
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4.1.2.1 A single-layered plate

Consider a ceramic plate poled in the X; direction as shown in Figure
4.1.2(a). The material matrices are in Equation (2.3.45). The plate is
electroded at its two end faces at X; = 0 and X = [. The electrodes are
shown by thick lines in the figure. When the initial load p is being
applied, the end electrodes are shorted to eliminate the initial electric
field £, which otherwise would exist. Once p is already loaded, there
exist initial charges on the end electrodes. The electrodes are then opened
during the incremental flexural deformation and there are no incremental
charges on these electrodes. Therefore for the incremental fields the
electric displacement vanishes at both ends. The governing equations for
the incremental fields take the form

() _.(0 0) . (1 0) 11y _
G]31)3u§ 1)1 +G1(33)1u1(1) +R3(1)¢() =0,

@), o (0 0 , 1 (2) (M) ©) () _
Gunu 111 -Gy §1) Gs(lglul +R111)¢,(11"R331¢( =

4.1.15
L0490 =0, ( )
2). ( 0), (0 0), (1 2) 41 0) (1
R~ R — R — I3 + 1990 =0,
and the boundary conditions are
u® =0, X, =0,
1 2) 2) (1
Kl(l) =G1(“),u1(1) +R1( )¢() 0, X;=0,/ 4.116)
(D(°)=—2he ¢()=0 Xl =O,l, .1,
1 2), ( 2) 4Q1
() —Rl(ll) 1(1) L( )¢() 0, X;=0,,
where
0 0 0 0
Gl = 2hc44 +p. Gl =Gy =GB, =2hey,
2 2 0
Gih == 3 h (2Hey; + p), R = RS} = 2heys,
2 .5 2 3 4.1.17)
2 3 2 3 0
R =§h ey, LY =Zh'Ey,, IS =2hs,,
3
z ER ) L I en
c33 =c}3 ] e33 =e33 - s 833 - 833 + —.
n (oY n
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In Equation (4.1.16), the bending moment Kl(}) is coupled to

g =—¢,(11) through e, as expected. Furthermore, for the transverse

shear force we have K{J = G1(§)1)3u§?1) +GQu® + RN¢® which is

coupled to 953(0) =—¢® through e;s as expected. Equations (4.1.15); and

(4.1.16); show that ¢” is a constant which can be taken to be zero. Let
u" = Asin&X,, u” = Bcosé&X,,
¢ =Ceosix,,

where 4, B, and C are undetermined constants and ¢ = 7/l. The boundary
conditions in Equation (4.1.16) are satisfied automatically. Then the
buckling load can be determined from the following equations obtained
by substituting Equation (4.1.18) into Equation (4.1.15); 54

E'G A+ EGE) B+ ERIC =0,
A+ (EGH +GONB+(ERY +RYHC =0,  (4.1.19)
04+ (ERD + RGDB - (£ LY + LY)HC =0.

For non-trivial solutions of 4, B, or C, the following condition must be
satisfied

(4.1.18)

2 (0 0 0
&Gl % Y
0 2+(2 0 2 (2 0
§1%3 ¢ G1(11)1 +G§1:)n ¢ R1(11)+R3(3% =0, (4.1.20)

0 2 p(2 0 2702 0
gR:Sl; g R1(11) +R3(3% - LEI) +L(33))
which can be written as
a(l)ﬁ(m + b(l)l_)(l) +c¥ =0, “4.1.2D)

where

2 (kY
ﬁ(l) = { ’ /10 = —[—j ’ a(l) = 2’03
20z, 3 \7

2 - 2
Aoeis + (Ao€3; +€5)
&+ A&y

b =2, +_—L|:(/10 +1)cy +

C33

}, (4.122)

2 12——1—2
a_ 1 Ageys + AgCi3€53Cu
e = -—[106-44 + .

€33 &y +AgEy

www.iran-mavad.com
A se Gpudign 5 Qlasadily a0



Nonlinear Effects in Electroelastic Plates 175

Since Ao << 1 for a thin plate, it follows from Equation (4.1.22) that

®)? >>4a%¢Y and BY >>4® for thin plates. Hence, an

approximate solution to Equation (4.1.21) can be found as
V(e

>0

Our main interest is the effect of piezoelectric coupling on the buckling
load. To see this more clearly, we let ¢4y — oo in Equation (4.1.23), which
effectively eliminates plate shear deformations and the related
piezoelectric coupling through e;s. We then expand Equation (4.1.23)
into a polynomial of Aq that is small. This leads to

PO m A (1+ k%), k* =25 /(Tyen), (4.1.24)

where k? may be considered as an electromechanical coupling factor.

Under our notation —4 is the dimensionless buckling load from an elastic
analysis without considering the piezoelectric effect. The second term on
the right hand side of Equation (4.1.24), represents the effect of
piezoelectric coupling due to e, . This additional term is proportional to

k?, which ranges from 0.1 to 0.6 for most polarized ceramics. Since

k? is multiplied by Ao, which is a small number, the piezoelectric

modification on the buckling load is a small addition to the elastic
buckling load. Hence an elastic analysis without considering the
piezoelectric effect gives a conservative estimate of the buckling load.

4.1.2.2 A bimorph with in-plane poling

In this case we consider a ceramic bimorph as shown in Figure
4.1.2(b). The end faces are unelectroded. The governing equations for the
incremental fields are

Gl(;)1)3u§?1)1 + Gl(;)‘a?lul(,ll) =0,

Gl + RAHD - GO - Gl =,
Rijuip - L4 =0,

145 - 1947 =0

(4.1.25)
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with the following boundary conditions:
¥ =0, X,=0,],
K =G{ihui) + ROSP =0, X, =0,/,
00 = Kijul) - P40 =0, X,=0,,
o =040 =0, X, =0,

(4.1.26)

where the plate material constants are as in Equation (4.1.17) plus
RY = Re,,. (4.1.27)

In Equation (4.1.26), the bending moment Kl(}) is coupled to
@1(0) = —¢’(1°) through e,; as expected. We note that Equations (4.1.25),
and (4.1.26), imply ¢ = 0. Let
u) = Asiné&X,, u® = Bcosé&X,,
¢© = Dcosé&x,,
which satisfy the boundary conditions in Equation (4.1.26) when ¢ = m/l.
Eliminating ¢ from Equation (4.1.25), and Equation (4.1.25);, and

substituting Equations (4.1.28), ; into the resulting equation and Equation
(4.1.25);, we obtain

§2G1(§)1)3A + §G1(§)3)1B =0,

(4.1.28)

(4.1.29)
G A+{E G, + (L) RO 1+ G B =0.
For nontrivial solutions of 4 and B, the following must be true:
© GO
: G:>313 2(@ L (7O - wry. o =9 (4.1.30)
§1¥3 EIGT +(LiY) ™ Ry 1+ Gy
or

a@p®? +pPpP 1O =9 (4.131)
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where
7@ __P a?® =
P e, 0
2) 1 3 -2 —-1
Cy3 4

1 3 12 ——
c® = _—I:/10044 + -10044033193235331}
Cy3 4
An approximate solution to Equation (4.1.31) is given by

2 @ .2
=) . _ [ a’’c
PP~ M”@+wme' (4.133)

Letting ¢4y — <o in Equation (4.1.33) and expanding the resulting
expression into a polynomial of A, we have

_(2) ~=Ag(1+— k33) k33 —‘333 HC33633) - (4.1.34)

Comparing Equation (4.1.34); with Equation (4.1.24);, we notice the
important difference that in Equation (4.1.34), the piezoelectric
modification on the buckling load is not multiplied by the small number
Ao. This is because in Equation (4.1.15) the plate piezoelectric coefficient
R3) is proportional to #’. However, in Equation (4.1.25) RY) is
proportional to 4> and it is the squares of the piezoelectric coefficients

that appear in the buckling loads. Therefore the piezoelectric effect on
the buckling load is much stronger in Case (b) than in Case (a).

4.1.2.3 A bimorph with thickness poling
The third case is a ceramic bimorph as shown in Figure 4.1.2(c). The

plate is electroded at X; = 0 and X; = /, with shorted and grounded
electrodes. The governing equations take the following form:
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0) .0 0) . (1 D ,a
G1(31)3u§ 1)1 +G1(33)1”1(1) 1(1)3¢(11) =0,
2) . .Q 0) . (0 0) . 1 1140
Gl(ll)l 1(1)1 G3(1%3”§ 1) G'aglglul() +[R3(1)1 1(3)1 ]¢() 4135
(0)¢(0) ( o )
ip =0,
1. .(0 1 Dq,.0 2) 4 0) 4 (1
R (R ~ R 1)~ D) + 194 =0
The boundary conditions are
u? =0, X, =0,
1 2) . 2= 4
Kl(l) :‘Gl(ll)lul(l) +h 631¢() =0, X;=0, @.136)
¢(0) — , l =0,l e
oM =0, X, =0,
where
G, = h2 2hZ,, + p), GO, =2h
11 = (2hcyy + p), Gisis =2hcyy + ps
0 0 0 1 1 2
G1(33)1 =G3(1%3 =G§131 =2hcy,, Rl(l?i = R1(3)1 =h"es,
- 2
R, = ke, L =2he,, [P =Zhg,, L§) =2h&;, (4.137)
- 2
oy =cp —cy3 /ey,

€ = €3 — €363/ €y,
= _ 2
Ey =&y ey /ey

In Equation (4.1.36), the bending moment Kl(}) is coupled to
E® =g through e,, as expected. In this case ¢ is zero. We let

0) _ : @
u;’ = AsinéX,, u;’ =BcoséX,,
31 ) ! ' ! (4.1.38)
¢ = Csin&X,,

which satisfy the boundary conditions in Equation (4.1.36). Substituting
Equation (4.1.38) into Equations (4.1.35); 5.4

£'Gi A+ G B+ £ R{HC =0

113
3113A +(& G1(121)1 + ng(l)gl )B + §(R1(;)1 - R§11)1 )C =0,
& RA+E(RE)

(4.1.39)
131 ~ Rg)l )B - (52421) + ng) )C=0.
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For nontrivial solutions of 4, B, or C, the following condition must be
satisfied:

1
EGH, o EXRS)
O EGHL +GD, —&RY -RE) =0, (4.1.40)
ERD —ERY -RE) - (LY + L)
or
aDpP? L pOpO 1 O =, (4.1.41)

where

5@ __P a® =1

P ke, 0

310[/106125 +(eys _3_31)2]
4(Ag&); +E53)

c® = 1 y) 32 ['109125 + 51_110445321]
oCas + = .
1 A Ape +E&33)

b =2, + _i[(/lo +1)cy, +
n

}, (4.142)

2

An approximate solution to Equation (4.1.41) is found to be

3) 3,03
=) o _ c a’’c
P~ (1+ Oy } (4.1.43)

Letting c44 — e in Equation (4.1.43) and expanding it into a polynomial
of Ay, we obtain

PO = =251+ = k31) ki =5, /(@ 5) (4.1.44)
which shows the same behavior as Equation (4.1.34). Buckling analysis
of circular piezoelectric plates using two-dimensional equations was
performed in [47].

4.2 Large Thickness-Shear Deformations

We are interested in thickness-shear vibrations with relatively large
shear deformations [48] for a plate whose reference configuration is
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180 Mechanics of Piezoelectric Structures

shown in Figure 4.2.1, with the X, axis as the plate normal. The relevant
relatively large displacement gradient components are u; ; and us,. Up to
cubic nonlinearity, the three-dimensional equations are given in the
fourth section of the first chapter.

X

X, N

Figure 4.2.1. The reference configuration of an electroelastic plate and
coordinate system.

We introduce a convention that subscripts 4, B and C assume 1 and 3
only but not 2. Keeping nonlinear terms of u;, and u;; only, from
Equation (1.4.6), we have

Ky = Crmrs¥rs — €k Ex
e ) 42.1)
+ Cramarpa¥apUpr + Craaaprca¥ap¥p e -

4.2.1 First-order theory

For a first-order plate theory we make the following expansions of
the mechanical displacement and electric potential:

u, =uP (X, X5,0)+ X,uP (X, X,,0) + X7uP (X, X5, 0),

(4.22)
¢ =X\, X5, 0+ X6V (X, X3,0),

where ugl) and ugz) will be eliminated or neglected later. From Equation
(4.2.2) we can write
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Ups =U1(e?9) +X2U§z2=

4.2.3)
Ey =P =£§<°) +X2£§(1)5
where
U =u), Uy =ul, U =u3,
U =i, UR =u, UY =i,
U =uf), UR =uf, UF =ul, 424
UR =u), UY =247 =0, UY =u, -
UP = =0, UL =2, UY =uf) =0,
U =), U =2 20, U =ul,
and
B =40, HO =g, 0 =0,
4.2.5)

1 1 1 1 1
£ = g0, 20 =g, =0
Substituting Equation (4.2.2) into the variational formulation in Equation
(1.1.24), for independent variations of 6u51°) " §u§°> , &:S) R 5¢(°) and
56", we obtain the following two-dimensional equations of motion and

electrostatics:

KSI)\/)I,B +FAE10) = 2p0h”1(v10), M = 15 25 3,
201 ..
Ky —KQ+FP =203, 4=1,3,
BA,B 24 A 3 4 (4.2.6)
oy +0? =0,
0P, -0 + oV =0.
Equation (4.2.6); for M =1 and 3 are the equations for extension, and
for M = 2 the equation for flexure. Equation (4.2.6), is for thickness-

shear in the X; and X; directions. In Equation (4.2.6) the plate resultants
and surface as well as body loads of various orders are defined by
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(KD 00y = [ (K, 0 3X"dX
> Pk _h{ > Dy sXs

h
(") =[X; Ky ]ﬁh + I_h PofuXydX,, 4.2.7)
o™ =[x}0,1",, n=0,1,

where Kg’,{} represent plate extensional and shearing forces, and bending
and twisting moments. Since the plate is assumed to be thin, we make the
stress relaxation of K,, =0. This implies, through Equation (4.2.1) by
setting L = M = 2, the following expression for u,, in terms of other
components of the displacement and potential gradients:

1
—(C2ZRSuR,S —Comth 5 —exnEg
Coom 4.2.8)

e e
+Copa282% 4,245 2 + Coyanpacatla 2¥p 2¥c 2)-

Uyy =

In Equation (4.2.8) u,, has been eliminated from the right hand side.
When R=S =2 the two terms containing u#,, cancel each other out.
Substituting Equation (4.2.8) back into Equation (4.2.1) and Equation
(1.4.6),, we obtain the following relaxed constitutive relations for thin
plates:

Kim =Crurstins — €k Ex
+Crarpa¥a 2B + Crapapaca¥a s a¥c 2 (4.2.9)
Dy = expsips + ExLEps
where the plate material constants are defined by
Crmrs = Cimrs ~CunCnrs / Cam>
Comazsr = Cluazsr ~CunCnasa [ Coms
Crarpaca = Comarsac2 ~ CrunCnasaca | Cam s (4.2.10)
Cxim =€k ~Crmm€xn ! Coms
ExL =€x +exnlin /o

The right hand side of Equation (4.2.9) does not contain u,, and K,, =0
is automatically satisfied by Equation (4.2.9). Integrating Equation (4.2.9)
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through the plate thickness, we obtain the zero-order two-dimensional
plate constitutive relations

Kg)v} = 2h(El',MRSUI(2(.)S) _EI'(LMT;?)
— N1 , = . .a1)..a
+0Lm232u,(4)u1(3) +CLMA232C2“£1)”1(a)ué))’ (4.2.11)
DY = 2h(@EmUR + 5, ED),

where we have modified the zero-order linear plate constants by the
introduction of two shear correction factors x; and x3 as follows:

UY > UY, UD - x,UY. (4.2.12)

Multiplying both sides of Equation (4.2.9) by X, and integrating the
resulting equation through the plate thickness, we have the first-order
plate constitutive relations

k0 2 L o Lo
LM :T CmsUrs — € Ex')»
o (4.2.13)

1 - ), = 1
(DI(<) = (‘31(}?3U1(e32 +8KLE£))-

3
A more sophisticated stress relaxation using K$3 = 0 and Kglj) =0to

eliminate U and Uélj) (and hence u{" and #{?) can be performed.

In summary, we have obtained two-dimensional equations of motion
and electrostatics (4.2.6), constitutive relations (4.2.11) and (4.2.13), and
the displacement and potential gradients (4.2.4) and (4.2.5). With
successive substitutions, Equation (4.2.6) can be written as seven
equations for ul(o), u§°>, u§°), ul(l) , ugl) , ¢(°), and ¢(l). To these equations
the proper forms of boundary conditions can be determined from the
variational formulation in Equation (1.1.24). At the boundary of a plate
with a unit exterior normal N and a unit in-plane tangent S in the
reference configuration, we need to prescribe

K& or 4, K% or u, K }(\?2) or ul”,
K@ or 4, K or u, (4.2.14)
0P or ¢9, oP or ¢V,
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4.2.2 Thickness-shear vibration of a quartz plate
As an example, we analyze large thickness-shear vibration in the X;

direction of a rotated Y-cut quartz plate (see Figure 4.2.2) [48], which is
a widely used operating mode of piezoelectric resonators.

X2

1\

2h S

X1

Figure 4.2.2. An electroded quartz plate.
4.2.2.1 Governing equations

The material matrices of rotated Y-cut quartz can be found in
Equation (2.1.2). Consider a plate electroded at its two major faces. For

thickness-shear in the X; direction, u(l) is the dominating mechanical

displacement which is coupled to ¢". For a very thin plate, edge effects
can be neglected and the thickness-shear mode does not vary with X; and
X;. Then the relevant equations are

1 »

3
_K® = 2/’30” 0

0 0
K(l =2h(c 2112U12 ezzlf()

+ 0211212"1( )“1() +021121212“1 ull) (l)) 4.2.15)
D = 2h(2;,, U + &, ES”),

o —uf,

EO = _g0.

From Equations (4.2.15), 45 the equation of motion in Equation (4.2.15),
can be written as

i+ @lu+ put + i = ag®. (4.2.16)
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In Equation (4.2.16) we have denoted
u=u", @ =36,,/(ph"), a=-3,/(ph’),
A A L

2

P e, (4.2.17)

! 12 £45(Ces +3226 /€5,) ,
B= 35211212/(/)0}‘2), 7:3521121212/([)0}’2)’

where the thickness-shear correction factor is taken from [27]. In
Equation (4.2.17), @ is the fundamental thickness-shear frequency from
a linear solution. We want to study free and forced vibrations near @ .

8ki. =
(1—_7%)’ k226=

4.2.2.2 Free vibration

For free vibrations we look for a periodic solution with undetermined
frequency @ and amplitude 4 to the homogeneous form of Equation
(4.2.16). For rotated Y-cut quartz, B = 0 and therefore the quadratic
nonlinear term in Equation (4.2.16) disappears. Substituting u# = Acos ¢

into Equation (4.2.16) (with V' =0), and neglecting the cos3ax term, we
obtain

—a)2A+w:A+%yA3 =0. (4.2.18)

Equation (4.2.18) yields the following expression for the nonlinear
resonant frequency

2
W= "wi +%}'A2 Ea)m(1+38—);%- , (4.2.19)

o0

and the following corresponding free vibration mode
3y4*

u=Acoslw_(1+
lo.( 8w?

). (4.2.20)

Equation (4.2.19) shows that for large amplitude vibrations the frequency
becomes amplitude dependent.

4.2.2.3 Forced vibration

Next consider electrically forced vibrations under a voltage across
the thickness of the plate with ¢(xh) = £0.5Vcosar. Then Equation
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(4.2.2), implies that
¢@ =0, ¢V = - Y cosar. 4.221)
With ¢ from Equation (4.2.21), Equation (4.2.16) can be written as
i+ @lu+cu+mw’ = %cosa)t, (4.2.22)

where we have also introduced a damping term with a damping

coefficient ¢ = 2w.§ = w./Q. { is the relative damping coefficient and Q
is the quality factor. We look for a solution to Equation (4.2.22) in the
following form:

u=Acos(wt +v), (4.2.23)

where 4 and y are undetermined constants. Substituting Equation (4.2.23)
into Equation (4.2.22), neglecting the cos3(w¢+y) term, and collecting
the coefficients of sina¥ and cosax, we obtain

[(w?2 —a)z)A+§7A3]cosz// —cAwsiny = a_V,
g 2 (4.2.24)
(@2 - »*)4 +Z}/A3]siny/ +cAwcosy =0.

Multiplying Equations (4.2.24), , by cosy and siny respectively and then
adding them, and multiplying (4.2.24),, by siny and cosy respectively
and then subtracting one from the other, we have

(@) - )A+3;/A3 ——Vcosy/,
2h (4.2.25)

aV .
cAw=———siny.
e
Squaring both sides of Equation (4.2.25),; and then adding them yields
(@2 -02)A+= 2 }/A P +(cdw)* = (Z:) . (4.2.26)

We are interested in resonant behaviors near .. Therefore we denote
w=w, +Aw. Then w? - * =-2w,Aw , and Equation (4.2.26) can be
written as
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34, av
¥ )2 +_=(

8a. 4 4hw, A

from which we can solve for A®@:

(Aw— )2, (4.2.27)

2

1
M .1 T 4228
80, 2[(2h A) c’1?. ( )
We calculate the electric current flowing in or out of the driving
electrodes, which is important to resonator design. From Equations
(4.2.15);, (4.2.17),, and (4.2.23) we have, for the free electric charge per
unit undeformed area of the electrode at X5 = A

D®)

—_ — (k3 _F A0
Qe_ 2h (KleZGu 822¢ ) (4'2_29)

= —K,€,4l = —K,€,, Acos(axt +y),

Aw =

where, for near resonance behavior, we have neglected the electrostatic
term in the expression of Q. which is much smaller than the piezoelectric
term. Then the current flows out of the electrode is

— 0, =K, 8 Awsin( ¢ +y) = I sin(ax +y),

_ (4.2.30)
I=-xeAo=-Ke, Ao, .

From Equations 4.2.30), and 4.2.28), we obtain the frequency-current
amplitude relation

2 o 172
Ao=Y L V2 lff@Ke ) 2| 4231)
8o | mm. | 2|\ 2A1

Quartz is a material with very little damping. We choose the quality
factor to be Q = 10°. Consider a 1 MHz fundamental mode resonator
with # = 0.8273 mm. The frequency-current amplitude relation predic ted
by Equation (4.2.31) is plotted in Figure 4.2.3, which is typical for
nonlinear resonance.

The vertices of the curves in Figure 4.2.3 fall on a parabola as
predicted by an approximate analysis from the three-dimensional
equations [49]. The Equation for the corresponding parabola predicted by
the two-dimensional equations here is Equation (4.2.31), without the last
term a the right hand side. In Figure 4.2.4 we plot the two parabolas
from the two- and three-dimensional solutions as a comparison. It can be
seen that the two parabolas are very close to each other.
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800 -
1 (A/m)

0 =100,000

-200 -100 0 100 200

Figure 4.2.3. Nonlinear amplitude-frequency behavior near resonance.

800 T I (A/m°)

From plate

600 equations

Approximate

400 3D solution

200 -

Figure 4.2.4. Amplitude-frequency behavior predicted by two- and three-
dimensional equations.
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Chapter 5
Piezoelectric Shells

As a natural continuation of piezoelectric plates, we next study
motions of thin electroelastic shells, which are common structures for
devices.

5.1 First-Order Theory

Consider an element of a thin shell (see Figure 5.1.1).

0

Figure 5.1.1. A shell element and coordinate system.

189
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oy and o are the middle surface principal coordinates, and ¢ is the
thickness coordinate. (04,05,05) is an orthogonal curvilinear coordinate
system. The thickness of the shell, 24, is much smaller than the radii of
curvature R; and R, of the middle surface. Let 4; and 4, be the Lamé
coefficients corresponding to ; and o, at the middle surface. The metric
in (o,00,05) is given by Ai(1- ws/R;), A,(1- as/R;), and 1, which
determines the tensor operations in (04,06,05). The strain-displacement
relations take the following form [50]:

5, = 1 [aul+gz_aAl+Alu3}

A1(1+%) ooy A, 0a, R
! (5.1.1)
s, = 1 {6u2 ﬂ!_ﬁ_aA2 N Ayu, ], S, :_t?u_3,
A1+ a3 ) Oa, 4, 0ay R, oa,
RZ
28, = 4,(1+% aa B+ ! a 5”3,
2 0% A2(1+7{i A2(1+72i) *
2 2
28, = A1+ 23) -2 M, 1 o

da ay a; . da;’
! N A40+—=) | 40+—=)"7
i€ R]) i( Rl)

40+2
R~ 0 u,
a; . Oa o a; . da a
A+ 40+ | 40+2) ) 4,0+
2 ( Rz) i( Rl) ( Rx) 2( R,

(5.1.2)

A2(1+%3-) 5
2S12 — 2 u2

The electric field-potential relation can be obtained from the gradient
operation on a scalar in curvilinear coordinates
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B8 g 1%
A(1+=2)%% A,(1+22)%%
) R R, (5.1.3)
P
Oa,

The charge equation of electrostatics is given by the divergence
operation on a vector in curvilinear coordinates

V-D= - ! - {aa {AAH%)DJ
A(1+32)4,(1+22) 9% 2
[( RI) H( Rz)

8
+5—{A1(1 +%?)D2} (5.1.4)

a,

o
+ a[,41(1 + %?)Az(l +2D, H =

3

For thin shells, if the dependence of 4,(1- a3/R;) and 4,(1- o3/R,) on a3 is
neglected after their derivatives in the above formulas with respect to a3
have been carried out, Equations (5.1.1) through (5.1.4) reduce to
s Ou, L 04, N Au,
ne Al da, A, 0a, R |
1 [au2 , 1 04y +A2u3} s, _ouy

Sp=—

A, |O0a, A 0a R, Oa, (5.1.5)
25, = b 1O Lo 0w w104

da; R, 4,0a, da; R 4 0q
2S12—14— o |u A 0

4, 0a, | 4 A 6a1 A

Lo o 19 g0 (5.1.6)

4, 0q, 4, Oa, da;’
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1

+ Aﬂz(% + E}—]@} =0.
1 2

The power series expansion method for plates also applies to shells [51].
For a first-order shear deformation theory we make the following
expansions of the displacement and electric potential in (0, 05,03):

V-D=

0
Al ) o)
(5.1.7)

~ 4,0 1 2.2
u; = u5. )(al,az,t)+a3u§)(a1,a2,t)+a3u§ Nay,a,t),

(5.1.8)
¢ = ¢(0)(a1,a2,t) + a3¢(1)(a19a25t)3

where #{" and uﬁ.z) will be eliminated or neglected later. With Equation
(5.1.8), the strains and electric field for thin shells can be written as:

Sy =8P+ .50, E,=E® +a,EP", (5.1.9)

where

(0) O 54 449
Sl(?) — ouy ) 1, Al i
Oay 4, 0o, R
0 0 0
S(O)_ ous” +u1( ody A | o _ o)
22 = i 33 793
da, 4 0oy R,
(0) 0
U 1 ou
Hno o 1o

285 = 4D , 5.1.10
Bo R A4, bay ( )
2500 = 4 _ﬁ Laugo) ’
. R 4, dq

(0) (0)
A da, A A1 da; A2
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o)) m (1) 1) (1)
Sﬂ,z_l_[au1 L) o4 A } L{aul L1 o4 ]
4| 0oy 4, Oa, R, 4| 0 A2 oa,

4| 0o, A 0oy R, | 4| oa, A 6al
0 (1)
8P =2u, 2850 =2uP ;‘2”3 -2 (5.1.11)
, 0a, R,
18 W

Sg) — 2 @ 4 -
A ooy R

250 =4 9 ”1(1) LA 0w |
4, ba, 4, 3ay | 4,

0 0
o 1087 po_ 1047

3

0 1
B E§)=_¢()a

Al aal ? A2 aaz
" i (5.1.12)
E0 =19 g 1O po_g
A, 8qy 4, oa,

The two-dimensional equations of motion are obtained by substituting
Equation (5.1.8) into the variational formulation in Equation (1.2.26) for
independent variations of du(” , o , &”, Sul” and " . The
results are [50,52]

0(Nu4,) + O(Nyu4)
oq, oa,
+N,—L 04 -N,,—2% o4, +0,44, —1-+F(°) =2 phd 4,i®,
oa, oy Rl
0(Np4,) + 0(Np4)
oq, oa,
04, 04,
+ Ny —— 7e, -Ny—— Pa, + 44, E;‘*‘F(O) =2 ph4 4",
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——(Qn 4) + (QzaA )

Ady A4, o N
-N. + FO =2phda 4,i#°,
R 2T R, pna Ayuy

(5.1.13)
_Nll

o) o(Mh)
oo, oa,
+ M, EA;— M,,— 0y ~OnA4, + Fl(l) =
Oa, oo
6(M12A2)+ a(MZZAl)
oo, Oa,
+ My —= o4y -M,— 04, - Ondd, + Fz(l) =
oq, oa,

2ph 244, (1),

(5.1.14)

The two-dimensional charge equations are obtained by substituting
Equation (5.1.8) into the variational formulation in Equation (1.2.26) for

independent variations of 5¢‘® and 56, or by moment operations on

the three-dimensional charge equation in Equation (5.1.7). The results
are

a(D"4,) 8(DP 4
(2 2)+ (24 ‘)+(—1—+L)A1AZD§°>+D<°>=0,

aa] aaz R] R2
o(DM4,) o(DP 4
( 1 2)+ ( 2 1)+(—1—+L)A1A2D§1) (5.1.15)
60!1 aa2 R] R2

— 44,0 + DY =0.
The shell resultants and mechanical surface loads are defined by
h
{Nab’Q3c’Qc3} = { (0) T3((?)’T(0)} J._h {IZIb’T;c’TcG}day
My=TO = [ T,a.d 5.1.16
ab = ab__[h ab@38 03, (5.1.16)

FO =l,44), n=01 abc=12.
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N,; are the extensional and shear forces in the tangent plane. Q5. = Qc3
are transverse shear forces. M,; are bending and twisting moments. The
resultants of the electric dispalcement and surface charge are

h
D =" Dagda,, DV =laID, A4, (5.1.17)

Equations (5.1.13) are for extension and flexure, and Equations (5.1.14)
are for shear deformations in the o and o, directions. For shell
constitutive relations we substitute the three-dimensional constitutive
relations from Equation (1.2.7) into Equations (5.1.16) and (5.1.17), and
perform the following stress relaxations:

7Y = j T,da, =0,
(5.1.18)
7O = J'_h Taauda, =0, j=123,

so that S§y and S5, and hence #{" and 4 can be eliminated. Shear

correction factors can be introduced in the manner of Equation (2.4.16).
Then the following two-dimensional constitutive relations will result:

T = 2h(c;, Sy — g, EL),

(5.1.19)
DY =2h(g,; SO + £,E),

2n
Tr(l) = '3—(}/rsSA(']) - l//krEIEI) )s
(5.1.20)

/]

3
D,»(‘)=%(W¢S§”+ ED), rs=126,

where the relaxed material constants are defined in Equations (2.3.20),
(2.4.18), (2.4.19), and (2.4.15).

In summary, we have obtained two-dimensional equations of motion
(5.1.13) and (5.1.14), charge equations (5.1.15), constitutive relations
(5.1.19) and (5.1.20), strain-displacement relations (5.1.10) and (5.1.11),
and electric field-potential relations (5.1.12). With successive
substitutions, Equations (5.1.13), (5.1.14) and (5.1.15) can be written as

seven equations for u(o) . u§°> s ugo) , ul(l) s ugl) s ¢(°) and ¢(1). At the
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boundary of a shell with a unit exterior normal n and a unit tangent s, we
may prescribe

N, or u” N, or u” 09 or u?,
M, or u’, M, or ul, (5.1.21)

DO or 49, DO or ¢

Equations for laminated piezoelectric shells can be found in [53].
Equations for electroelastic shells under biasing fields can be found in
[54,55] along with buckling analysis [55]. Nonlinear equations for
electroelastic shells in large thickness-shear deformations can be found
in [56].

5.2 Classical Theory

For the classical theory of a shell in coupled extension and flexure
without shear deformations, we set the relevant shear strains to zero:

@ 1 ou®

280 =y M L7 g

R 4 Oq

o o (5.2.1)
28O w2 107

This allows us to express #" and uél) in terms of the zero-order

displacements for extension and flexure. Furthermore, we ignore the
rotatory inertia in Equation (5.1.14) and obtain

a(AJIIAZ) + a(MZIAl)

oq, oa,
+ M, — o4 _ M, 94, Ondid, + Fl(l) =0,

Oa, oo

(5.2.2)
o) o(Mh)

oq oa,

04 o4
+ My —2 - M —— 044, + Fz(l) =0,

oq oa,
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which yields expressions for transverse shear forces Qs; and Qs in terms
of the bending and twisting moments. In summary, the equations for the
classical theory are
o) , V)
oq, oa,
+ N, __GA -Np— 04, + 01344, i + F(O) =2 ph4, Azu(o)
oa, ooy R
6(N12A2) " a(N22Al)
oq oa,
04, 04, 1

+Ny— Py Ny— Q23A1A2 + Fz(o) =2 ph4, Azugo),
(o4 60:2 R,

(leA ) + (Q23A1

RNz AzleA2
1 2

(5.23)

+F% = 2 phd, 4iil”,

6(D1(°)A2)+ D" 4)
oo, Oa,

+ (4= ADY + DO =0,

1
a(Dl(l) A2)+ a(D§1) A1) (5.2.4)

Oy oa,

+ (1% + ;}-)A,AzDg) ~ 4,4,D{” + DV =0,

1 2
where

N(O) =2h(E S(O) _ E(O))

rss

DO =2n(E SV +£,E), rs=126,

gy

(5.2.5)
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20
Tr(l) = _(7rsS§1) - l//krEIEI) )’

(5.2.6)
D,(l) = (‘//’SSS) + é’l E(l)) r,s= 1’2’6’
oM A oM, A
SR TRA N )
1 2
+ Mlzﬁ_ My, %"‘ RO,
O o (5.2.7)
o(M,4,) (M4 o
OnA4i4, = ( Z 2)+ (6;2 1)
1 2
+ My — o4, LM, — 04, FZ(I)’
oy 60!2
o 1[0 o4 aal?
1 4| ooy 4, Oa, R, ,
so 1| ou” ot A (5.2.8)
2 Oa, A4 Oa R, ’
2S(0) :ill_ 3 ul(o) A 9 (0)
12 A2 aaz 1 A a(11
o_ 1o o
g Be T ay |
Q 2 0,
(1) M 54
SO = L{%‘ﬁ_ + ”1;_6__2_} (5.2.9)
a, 1 00y

S0 = A 0 |u| 4 0 |u
4,00, 4 A 6(11
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(0) (0)
u 1 6u
O

R A] aal
& (0) (5:2.10)
(1) 1 3u
0 0
0= 137 o 1060 po_ o
4 2oy P 4, da, ’
) o (5.2.11)
ED = 1267 -, E§1)=__1.—_a¢ . EP=0.

A1 Oa, 4, oa,

With successive substitutions, Equations (5.2.3) and (5.2.4) can be
written as five equations for u(°) , u§°) s u§°) , ¢(°) and ¢(l). At the
boundary of a shell with unit exterior normal n and unit tangent s, we
may prescribe

N, or 49 N

nn n > ns

D +M,, o u¥, M, or U, (5.2.12)

nn

DY or ¢ DM or ¢P.

0
or u®,

5.3 Membrane Theory

A thin piezoelectric shell can sometimes be treated as a membrane
that does not resist bending, without bending moments and transverse
shear forces. In this case we have the following membrane theory:

N, 4 8(N.
o(Ny, 2)+ ( 21A1)+N12§£1__ 22242‘“*1’;(0) = 2phd 4,il®,
ooy Oa, oa, Oy
(N, 4 O(Ny4
( 12 ) ( 22 ) N, _N11 04, +F(0) =2ph4, A2u(0) (53.1)
o, oa, c'?a1 oa,
1 1

=Ny, E‘sz Ez_+ Fs(o) =2phﬁ§0)a

www.iran-mavad.com
2 ge (puadige 5 Ol sadils g e



200 Mechanics of Piezoelectric Structures

3(D®4,) o(D4
(2 2)+ (> ‘)+(i+—1—)A1AZD§°>+D<°> =0,
oy oa, R R,
3(DP4,) o(DP4
( 1 2)+ ( 2 1)+(L+—L)A1A2D§” (5.3.2)
oq, oa, R R,

- 4,4,D” + DV =0,

N)(‘O) = Zh(yrsS.EO) - WkrEI(cO))’

533
D,'(O) = Zh(WisS§0) + é’ijEj'O) ) r.s=126, ( )
3
Dl(l) _ %gyEfl)’ (5.3.4)

S(O) _ _1_ aul(o) + ugo) aAl + Alugo)
1 - i
4| ooy A4, Oa, R

(0) (0) (0)
S =L{a"2 Jh 04 | A } (53.5)

A, 0o, 4 Oa; R,

0
SRR WA [l R A8

0
g© -1 97

1 34©
L B0 =19 o0
4, 0oy

2 4, oa, ’ (5.3.6)
1 1 3.
E1(1)=_L§£, E§I)=__L%(), E® =o0.

Al aa] AZ aaz

With successive substitutions, Equations (5.3.1) and (5.3.2) can be
written as five equations for u® , u{”, 4{®, ¢® and ¢O. At the
boundary of a shell with a unit exterior normal n and a unit tangent s, we
may prescribe

or u,(,o), N

(0)
ns OF U,

N,

nn

(53.7)
D™ or ¢9, DO or ¢".
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5.4 Vibration of Ceramic Shells

As examples for applications of the shell equations obtained, we
analyze some simple vibrations of ceramic shells.

5.4.1 Radial vibration of a spherical shell

Consider a thin spherical ceramic shell of mean radius R and
thickness 2/ with R >> h (see Figure 5.4.1). The ceramic is poled in the
thickness direction, with fully electroded inner and outer surfaces. The
electrodes are shorted so that the lower order electric fields vanish.
Consider the spherically symmetric radial vibration of the shell with only

one displacement component % =u{"(¢).

Figure 5.4.1. A spherical ceramic shell with radial poling.

For the motion we are considering, the membrane theory is sufficient. By
symmetry we have

(0)
R=R =R S®=59 2%’ (5.4.1)

where the strain-displacement relation in Equation (5.3.5) has been used.
Then, from the constitutive relation in Equation (5.3.3) and the material
constants for polarized ceramics in Equations (2.3.35) and (2.3.36),
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we have

Ny=Ny= 2h(7’11S1(;)) + 712S§(2)))

©) N0

u
=2h(y,; + ¥y )—=— = 2h(ch, + b)) =~
(i +12) R (e +cby) R
(0)
=2h_7§_1_5ﬂ_
s+, R

Substituting Equation (5.4.2) into Equation (5.3.1)s, we obtain

1 20 u®

2 ..(0)
R lel + sl"’; R

-2 = 2phii; .

For free vibrations, the resonant frequency is
) 2
@ = T E el
P(sy1 +512)R

which is the same as the result in [9].

5.4.2 Radial vibration of a circular cylindrical shell

(54.2)

(5.4.3)

(5.4.4)

Next we analyze the axi-symmetric radial vibration of an unbounded
thin circular cylindrical ceramic shell with radial poling, electroded on its

inner and outer surfaces (see Figure 5.4.2).

Electrodes

Figure 5.4.2. A thin circular cylindrical ceramic shell.
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Let R be the mean radius, and 2/ be the thickness of the shell. The
electrodes are shorted so that the lower order electric fields vanish. The
cylindrical coordinates (@,z,7) correspond to {(a,,c,,a;) . Consider
cylindrically symmetric radial vibration of the shell with only one

displacement component %' =u{"(t) . For the motion we are
considering, the membrane theory is sufficient. For a cylindrical shell we

have
R =R, R,=,
4=R, 4,=1

The relevant strain and stress components are

(0) u§0) (0)
S =T> S5’ =0,

(0)

u u
Ny =2h(SY +71,85)) = 2hyy, —;2_ = 2her) —;T
o s

i R TGHY -5’ R

Substituting Equation (5.4.7) into Equation (5.3.1);
1 ..
- N“‘E = 2phii”

we obtain

(1) —(s)* R R

For time-harmonic motions, Equation (5.4.9) implies that

1 sk

o’ = 7 7 EN2 5 22
PR (511)" = (s13)

which is the same as the result in [9].
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5.5 A Shell on a Non-Thin Body

In some applications, we have a thin layer of one material on the
surface of a body of another material. Such a structure can be modeled as
a two-dimensional shell on a three-dimensional body with interface
continuity conditions.

5.5.1 A piezoelectric shell on an elastic body

Consider static deformations of an elastic body coated with a thin
piezoelectric film [57].

5.5.1.1 Governing equations

The piezoelectric shell has the following material matrices under the
compact matrix notation:
e Gy O
Cy Cp €3 O
C3 €3 €y 0
0 0 0 ¢y
0 0 0 0 c4
0 0 0 0 0 c4

(=R R e I =]
[==J T e R e R )

e €2 €3 €y €5 € &y € &3
€1 ©€yn €3 €y €5 €xl, |{fn En &xn|- (5.5.1)
€31 €3 €33 €3 €35 €y €13 &3 &3

As special cases, the matrices in Equation (5.5.1) include piezoelectric
ceramics poled in the 1, 2, or 3 directions. The shell is assumed to be
very thin so that the membrane theory is sufficient. The membrane
tensile and shear forces and electric displacements are given by the
following constitutive relations:
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N, = N, =2h(c/, SO + b8 — e E),
Ny, = N, = 2h(ch,S + c5,8 — el E™),

(5.5.2)
0 0
Niy = Ny = 2h(cesS§” — e E),
D =2n(ef, SV + €l + S — e E™),
where
2
ch=cn—cis/ey, oy =cp—cpeyl/csy,
2
Ch =Cp —Cy3/Cs3, €y = ey —Cp3€3/ Ca3. (5.5.3)

P o— 0, _ P— o
efy =€y —Cpne3/Cy, Efj =&y — e/ cy.

The membrane equations of equilibrium and electrostatics take the form

‘i(Ale) + —?—(Ale)

oo, Oa,
o4 o4,
+Ng—--N,— +AA2(2th1+T31' =0
da, da,
d 0
——(A,N)+—(A4N.
a0{1( L1N6) aaz(l 2)
A,
+ Ng—= o -N,—L 2 AA(2phf2+T32| =0, (5.5.4)
oq Oa,
1 1 h
—NI}I——N2§2—+2phf3+T33]_h=O,

0 d
—(4,D)+ —(4 D)
oq, Ja,

1 1 h
+(—+—)4,4,D" + 4,4,D,]" =
(Rl Rz) 14243 1472 3|-h

With successive substitutions from Equations (5.5.2), (5.3.5) and (5.3.6),
Equations (5.5.4),.3 can be written in the following compact form:

Ly, 60+ 2phf, + 15 - 1; =0, (5.5.5)
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where Lg are linear differential operators, and t; =T;5(1h) are the

traction vectors at the major faces of the film. # = 1, 2, 3 is associated
with the shell principle coordinates (a;, a, a3). At every point of the
shell, there exists a set of transformation coefficients d;; between the
local shell principal coordinates and the global Cartesian coordinates.
Multiplying Equation (5.5.5) by the transformation coefficients, we have

L@ ,49 6Dy 1 20nf, +t7 —17 =0. (5.5.6)

The elastic body is governed by the equations of linear elasticity.
5.5.1.2 Boundary integral equation formulation

Since the film interacts with the body through the surface of the
body, we use the boundary integral equation (BIE) formulation and its
numerical solution technique — the boundary element method. The
displacement u and surface traction t of the elastic body (in a domain
Q with boundary I") satisfy the following boundary integral equation:

CB (R + [ TP, R)u(P)T(P)

. R (5.5.7)
= [ U@, RYPP)+ [ O, RIB(PYIQAP),

where C;; = §;/2 for a smooth boundary, b is the body force vector of the

elastic body, U and T are known second rank tensors and are related to
the fundamental solution of the Navier operator in elasticity. They can be
found in a book on boundary element method in elasticity. P is the
source point and P, is the field point. The traction vector t on the surface
of the elastic body is related to the traction on one of the faces of the film

by t=—t". Therefore, from Equations (5.5.6) and (5.5.7), we obtain [57]
. oy . A
Cu+ jr Tudl = L U(L + 2 phf + t*)dT + J'Q UbdQ,  (55.8)

where the displacement continuity conditions between the body and the
film have been used. Equation (5.5.8) is a system of boundary integral-
differential equations because of the differential operator L. If the body
is only partially coated with a film, then BIE (5.5.7) applies to the non-
coated portion of the surface.
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5.5.1.3 An example

We examine the basic behavior of an elastic body with a
piezoelectric film governed by Equation (5.5.8) in an example. Consider
a two-dimensional plane strain problem of a circular elastic body of
radius R shown in Figure 5.5.1.

| y
V
Elastic
body Q a x
r o
o
R 2h
Piezoelectric
film

Figure 5.5.1. An elastic body coated with a piezoelectric film. The thick
lines represent electrodes.

From -a to ¢, the body is coated with a ceramic film poled in the
thickness direction. The film is electroded at its two major faces and can
be used either as a sensor or an actuator. The voltage across the
electrodes is denoted by ¥ which implies that

¢ =0, §O=v/2h. (5.5.9)

The relevant membrane force, in the polar coordinate system defined by
x =rcosf and y = rsind, is
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Ng =2hcfi(us) +u®)/ R+efV,

, (5.5.10)
ch=cy—cis/cy, ef) =ey —cpzep/ ey
From Equation (5.5.4), the tractions on the elastic body are
1 1 OO
T,= —=No = ——(2h h —‘”’R— efV)= —%e{,V,
o © (5.5.11)
1 ON, Uy gg + U, 1
T, =————”—=—2h”L eflVy) = eV,
YY) R( R esVo)=—enV,

where the approximation is for the case when the film is relatively soft
(small ¢f}). Since V is a piecewise constant function, its derivative leads

to a delta function and the traction is effectively a normal distribution ¢
and a pair of concentrated forces Q as shown in Figure 5.5.2 with

g=elVIR, Q=elV (5.5.12)

Figure 5.5.2. Actuating forces on the elastic body due to the film.
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The presence of the concentrated Q can also be seen from the boundary
condition of vanishing Ny at the edge of the film and Equation (5.5.11). ¢
is related to the curvature of the shell and does not exist for a flat film.
Since the traction on the elastic body due to the film is now
approximately known, the usual boundary element analysis of an elastic
body can be performed. Otherwise boundary integral-differential
equations will need to be solved as in the fourth section of the third
chapter. As a numerical example we consider a PZT-7A piezoelectric
film. For geometric parameters we choose R = 20 mm, 242 = 1 mm. A
voltage ¥ = 10 volts is applied across the film thickness. For the elastic
body we consider plastics with E = 2.0x10° Pa and v = 0.3. Seventy-two
quadratic boundary elements are used (see Figure 5.5.3). The three nodes
at the (0, 20), (-20,0) and (0,-20) locations in the BEM model are fixed in
the tangential direction.

257

25

Figure 5.5.3. Discretization of the circular elastic body with 72 quadratic
boundary elements (three nodes form one element).

www.iran-mavad.com
A ga Gpadiga 5 GLisadil A e



210 Mechanics of Piezoelectric Structures

The deformed shape of the body under the voltage is shown in Figure
5.5.4 for o= 30°. The deformed shape is as expected under the applied
loads and constraints. Conversely, if the body is deformed due to
mechanical loads, a voltage will be produced across the electrodes of the
film as a sensing signal.

25

—T~Undeformed Shape
| "Deformed Shape

x (mm)

Figure 5.5.4. Deformed shape of the elastic body (o= 30°).

5.5.2 An elastic shell on a piezoelectric body

Certain chemical and biological acoustic wave sensors detect a
substance through the mass-frequency effect of the substance
accumulated on the surface of a vibrating piezoelectric body. Next we
analyze frequency shifts in a three-dimensional piezoelectric body due to
a thin mass layer on its surface [58]. Consider a piezoelectric body with a
thin elastic film of thickness 24" and mass density p” on part of its surface
(see Figure 5.5.5).
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2h’

Mass layer

Figure 5.5.5. A piezoelectric body with a thin elastic layer on
part of its surface.

5.5.2.1 Governing equations

The governing equations and boundary conditions of the body are

iUy t CyiPy = P, in V,

—CplUy it 3ik¢,ki =0, in V,

u,=0, on §,,

(5.5.13)
Tjinj = (cjikluk,l + elq‘i¢,k )”j =, on Sy,
¢=0, on §,,

Dn; = (eyu,; ~ €49, In, =0, on Sp,

where ¢, is due to the interaction between the body and the film. For the
elastic layer, we use the two-dimensional equations of an elastic shell.
For the lowest order effects of the mass and stiffness of the layer, the
membrane theory is sufficient. The shell displacement vector is given by
Ug = uf,o) (ay,a,,t). f=1,2, and 3 is associated with the shell principle

coordinates (ay,0,,03). Then the shell membrane strains are
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0 0
59 = L ow” + Uy ody +L 2,
A4 0oy AA,0a, R
1 ol o 64, 1
— L2 0 (5.5.14)
S(O) A 6 u(o) A 6 ul(o)

¢ Aaal(Az) 4, da, (A1

SO =

).

The membrane stress resultants are given by the following constitutive
relations:
=20 (7S + 71557,
Ny =2H (78" + 1uS57), (5.5.15)

The membrane equations of motion are

0 15,
(4,N))+ 6_(A1N6)
a,

oay
+ N, o4 _ N, o4, AA,f, = AA42p Wi,
oa, oay
d d
—(AZNG) +——(4,N,) (5.5.16)
oa, Oa,
+ N, o4 _ N, —- O , AAf, = 4,4,2p WD,
oay 60:2

1 2
——N, -—N, + f, =2phi",

R, 1 R 2t f=2p
where f; is the load per unit middle surface area of the shell. With
successive substitutions, Equation (5.5.16) can be written in the
following compact form

= Ly(u®)+ £ =29, (5.5.17)

where L, are linear differential operators. Multiplying Equation (5.5.17)
by the transformation coefficients J;z between the local shell principal
coordinates and the global Cartesian coordinates, we have

- LY+ £, = pHi® . (5.5.18)
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We note that the #; in Equation (5.5.13), and the f; in Equation (5.5.18)
are actions and reactions, equal in magnitude and opposite in direction
( f; = -t;). Substituting Equation (5.5.18) into Equation (5.5.13),, for

time-harmonic motions with an exp(iw?) time dependence, the
eigenvalue problem for the free vibration of the body with the film can
be written as

= Cilyy —eyiPiy = PAYU, in ¥,
— el + ExPy =0, In V,

u,=0, on S,

Tyn; =(c iy, + ekji¢,k n; (5.5.19)
=¢g[2pH Au; — L(u)], on S,
$=0, on S,

Din; = (eikluk,l - gik¢,k n, =0, on §p,

where we have denoted A =w?. ¢ is a small parameter introduced to
formally show the smallness of the effect of the film. The real physical
problem corresponds to € = 1. Because of the continuity between the

layer and the body, the displacement of the layer u® is the same as the
displacement u of the piezoelectric body at its surface S. Equation
(5.5.19) can be written in a more compact form as

AU=/BU, in V,

u,=0, on S,

T,(Un; =e[2ph Ay, — Li(w)],, on S, (5.5.20)
¢=0, on S,

D,(U)n, =0, on S,,

where U = {u,¢} is a 4-vector. The differential operators A and B are
defined by

AU = {—c Uy — eiPr—Cithi ii + ExPui}>

BU = {pn 01 (5.5.21)

T;(U) and D(U) are the stress tensor and electric displacement vector in
terms of the 4-vector.
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5.5.2.2 Perturbation analysis

We look for a perturbation solution to Equation (5.5.20). Consider
the following expansions:

A=A+ 0,

e o, 05

where @, u® and ¢ are the frequency and modes when the elastic

layer is not present. Beginning from Equation (5.5.22), for the rest of this
section, the superscripts will be for perturbation orders, not for orders of
shell displacements. Substituting Equation (5.5.22) into Equation
(5.5.20), collecting terms of equal powers of € we obtain a series of
perturbation problems of successive orders. We are interested in the
lowest order effect of the layer. Therefore we collect coefficients of
terms with powers of £° and &' only. The zero-order problem is

-c j,-k,u,(colz- - ekﬂ¢(°-) = pﬂ(o)u,(o), in V,
e,k,u,(co,), + 8,k¢(°) =0, in V,

u,(o) =0, on S,

(cjiklul(r(,)l) + e/gi¢,(1<0))” =0, on S,

©0) _
¢ =0, on S¢,

(5.5.23)

(etklukl :k¢,(k0))”i=0, on §p.

This represents free vibrations of the body without the surface mass
layer. The solution to the zero-order problem, A9 and U9, is assumed
known as usual in a perturbation analysis. The first-order problem below
is to be solved:
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— il — ety = pPAU® + pA%0, in Y,
e,k,u,(‘ ,,+s,k¢(l)— , in V,

ui(l)=0, on §,,

(cute) + € In, = [2pH A% - L)), on S,

) _
¢’ =0, on S

(5.5.24)

1 1
(eiklul(c,; - 8ik¢,(k))ni =0, on §j.

The differential equations for the first-order problem, Equations
(5.5.24); 3, can be written as

AU = JOBU® 4 AWBU©® (5.5.25)

Multiplying both sides of Equation (5.5.25) by U and integrating the
resulting equation over 7, we have

< AU(I);U(O) >
= [ o’} — ey u® + (—eyuil) + 2,881V (5.526)
=19 <BUD, U@ > 1 1O < BUO, YO >

where, for simplicity, we have used < ; > to represent the product of two
4-vectors and the integration over V. With integration by parts, it can be
shown that

< AUO; O >

__I [Tj,-(U(O))njui(l) +Di(U(O))n,-¢(l)]dS
(5.5.27)
I [T, (UD)nul? + D, (U, 6 1dS

+< U(O);AU(‘) >

With the boundary conditions in Equations (5.5.23); and (5.5.24)s.,
Equation (5.5.27) becomes

<AUOy® >

5528
= -[S [2p'hrl(0)u£0) —Lk(ll(o))]u,((o)dS+ < U(O);AU(l) S ( )
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Substituting Equation (5.5.28) into Equation (5.5.26),
< AU®; U 5 — IS 2K AU — L (u®)uVds
= A9 < BUD;UO > +1Y < BUO; U >
which can be further written as
< AU©® _ Z(O)BU(O);U(I) >
- [ 2O - L) ds

=Y <BUO;U® >

With Equations (5.5.23), 5, we obtain, from Equation (5.5.30)

207 2% — L (u®)uVds
o B k k k
AN = 2

<BUO, U >
[, 2oWAOUD - L) ds
T

J‘ o OuOdy

(5.5.29)

(5.5.30)

(5.5.31)

The above expression is for the eigenvalue A = w®. For @ we make the

following expansion:

o=o'” + 0V .

Then
A =0 = (@09 +s0")?
= (@) + 26000V = A© + 4D,
Hence
e ) 1 )

a)(o) 2( (0(0))

L e A L) uOds

_2(60(0))2 & I pu(O) (O)dV
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Finally, setting €= 1 in Equation (5.5.34), we obtain

0-0® 1 J L@ 20Ky u1ds

= X
0@ T 2@y IV puOu®dv

(5.5.35)

The stiffness effect of the film is in Z,. When L, = 0, Equation (5.5.35)
reduces to

10,0, ()
- a® ) -[Sr phu u,’dS

5 IV i (5.5.36)

which is due to the inertial effect of the film mass only, and is the result
of [59].

3.5.2.3 An example
As an example consider the radial vibration of a thin elastic ring (see

Figure 5.5.6) of a mean radius R, thickness 24, Young’s modulus E,

Zh', pr’ E'

Figure 5.5.6. A thin elastic ring with a mass layer.
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Poisson’s ratio v, and mass density p. The mass layer has a thickness 2/,
Young’s modulus £’ and mass density p".

A ring can be considered as a circular cylindrical shell with the axial
extensional force N; = 0. When the mass layer is not present, in
cylindrical coordinates, the lowest radial mode is given by ([9] or
Equation (7.3.6) of the present book)

E
(@) =,
(5.5.37)

3

C
ufo) =C, u((,o) =0, uﬁo) =—v;z =0

where C is an arbitrary constant. 4 is due to Poisson’s effect, which is

relatively small and is neglected as an approximation. For the layer, the
equation of motion in the radial direction is

2WE' e
- e u, +f,=2p0u,. (5.5.38)
Hence
L,(u)=2;2E u,, Ly(u)=0, L, (u)=0. (5.5.39)

Substituting Equations (5.5.37) and (5.5.39) into the perturbation integral
in Equation (5.5.35), we obtain the frequency shift due to the mass layer
as

0) 3 nll
o-0 1 1 |2KH'E
= =201 ('9)>
o® 2@ 2ph[ R? PH(@)
= 10 2——1—— hj:: —p'H }25 (5.5.40)
20@)? ph\ R Rp

_1K(E P
2h\E p)J
Equation (5.5.40) shows that the inertial effect of the mass layer lowers
the frequency, and the stiffness of the mass layer raises the frequency as

expected. The result of Equation (5.5.40) and the result from [59]
considering the inertial effect of mass only (which is the special case of
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Equation (5.5.40) when E’ =0) are plotted in Figure 5.5.7 using E =,
and p from quartz. For E' and p’ we consider two cases of gold and

aluminum. It is seen that for a heavy mass layer of gold the inertial effect
of the mass layer dominates. However, for a light mass layer of
aluminum the stiffness effect is also important.

(- w(O)) 1@ Al., E'= considered

aA s o o o0& 00— 00—

v

-0.01 -

Gold, £’ considered

oy Gold E=0

Figure 5.5.7. Effects of film mass and stiffness on frequency shifts.

From the one-dimensional equation for a composite ring, it can be shown
that

o’ =—2§M——. (5.5.41)
R*(ph+ p'h)

Compared to Equation (4.8.9) of [9] or Equation (7.3.6) of the present

book, we see that Equation (5.5.41) represents the frequency of a ring

with a mass density and a Young’s modulus averaged from those of the

two phases according to the volume fraction. It can be easily verified that

for a thin mass layer, Equation (5.5.41) reduces to Equation (5.5.40).
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Finally, we point out that the effect of a mass layer on frequency can also
be studied from the variational (Rayleigh quotient) formulation of the
eigenvalue problem for free vibrations of a piezoelectric body with a
mass layer. The variational analysis is somewhat simpler than the above
perturbation analysis using the differential operators of the shell
equations.

5.5.3 An elastic shell in a viscous fluid

A crystal resonator when put in contact with a fluid changes its
resonant frequencies. This effect has been used to make various fluid
sensors for measuring fluid density or viscosity. Torsional modes of a
circular cylindrical cylinder or shell have particles moving tangentially at
the surface and are ideal for liquid sensing. We now study the
propagation of torsional waves in a circular cylindrical elastic shell in
contact with a viscous fluid [60] (see Figure 5.5.8). Two cases will be
considered: a shell filled with a fluid and a shell immersed in a fluid.

Fluid

Figure 5.5.8. An elastic shell in a viscous fluid.
3.5.3.1 Governing equations

Consider the following velocity field of the azimuthal motion of a
linear, viscous fluid in cylindrical coordinates:

v,=v,=0, vy=v(r,z1). (5.5.42)

r z
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The nontrivial stress components are [61]

T, = wi(i], T, = u?, (5.5.43)
or\r oz

where u is the viscosity of the fluid. The relevant equation of motion is

[57]

'— = | —+— — —, 5.5.44
p ot H o ror oz* ( )

v (62v 1@_v}+ o*v

where p' is the fluid density. We look for a wave solution in the form
v=V(r)sinkzexp(iox), (5.5.45)

where k is the wave number and w is the frequency. Substitution of

Equation (5.5.45) into Equation (5.5.44) results in the following equation
for V-

2
?__’;_Jrléﬁ_ 1+L2 V=0, (5.5.46)
o0&~ £ oL 4
where
E=ir, X=K+inl (5.5.47)
u

Equation (5.5.46) is the modified Bessel equation of order one. Its
general solution is a linear combination of [;(4r) and K;(4r), the first
order modified Bessel functions of the first and second kind. Hence

v = [CJ,(Ar) + C,K,(Ar)]sinkzexp(ict) , (5.5.48)

where C; and C, are undetermined constants.

Consider torsional motions of a circular cylindrical shell with
thickness 2/ and middle surface radius R. The membrane theory is
sufficient. Let the middle surface displacement field be

ul(o) = ug)) =u(z,t),
u® =u® =0, (5.5.49)

u® = =0,
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From Equation (5.3.1); the equation that governs u is

2
p2hii =G2hg—lzi +T,(R)=T,(R"), (5.5.50)
4
where 7 is the mass density and G is the shear modulus of the shell
T,(R") and T, (R") are the shear stress components at the outer and

inner surfaces of the shell. They are due to the interaction with the fluid.
Substituting Equation (5.5.43) into Equation (5.5.50) we have

2
p2hii=G2ha—§+ A B | I A6 | I (5.5.51)
0z or\ 7 )|+ or\r J|.-

Differentiating Equation (5.5.51) with respect to time once, using the
continuity of velocity (non-slip condition) between the shell and the

fluid, we obtain
+ [,uri(l)] _[wﬁ_(ﬁ)] . (5.5.52)
or\ r )|+ or\r )|,
R R R

First consider a circular cylindrical shell filled with a fluid (interior
problem). In this case, for the fluid region, since K,(0) is unbounded, we
must have C, = 0 in Equation (.5.48). Substituting the remaining C;
term into Equation (5.5.52), we obtain

po | ARLAR) _ 2]
p2hR| I,(AR) ’

2
P2 = Gzha—zv
0z

5.5.3.2 Interior problem

@ =2k +i

(5.5.53)

where ¢ =G/ p is the torsional wave speed of the elastic shell when the
fluid is not present. Equation (5.5.53) shows the effect of the fluid on the
wave behavior, and hence the potential of measuring fluid properties
through the wave frequency or speed. In the special case of a light fluid
with a low density, from Equation (5.5.47) we have
A=k+ 22 (5.5.54)
2k
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Then

I,(AR) = I,(kR) + I’(kR)lwp
‘f’; (5.5.55)
I,(AR) = I,(kR) + I!(kR) ’“’Zk

Substituting Equations (5.5.54) and (5.5.55) into Equation (5.5.53), to the
lowest order effect of the fluid mass density, we obtain

o 14 LL| = i v igtO (5.5.56)
k2h p pP2hR
where
_ kRIy(kR) _
I, (kR ’
( ) ) ) (5.5.57)
5 KRUL} (kR) — I (kR)] + 21, (kR (kR)
212 (kR)

In Equation (5.5.56) the effects of the fluid mass and viscosity become
explicit. If we denote

0=0,+Aw, @,=ck, (5.5.58)

where @, is the frequency when the fluid is not present, from Equation
(5.5.56) we obtain

bo B P, (5.5.59)
N 4kh p  4wyphR

Equation (5.5.59) shows that p’ causes frequency shifts and x causes
dissipation, as expected.

5.5.3.3 Exterior problem

Next consider a circular cylindrical shell immersed in an unbounded
fluid (exterior problem). In this case, since /,(«) is unbounded, we must
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have C; = 0 in Equation (5.5.48). Substituting the remaining C; term into
Equation (5.5.52), we obtain

o’ =ck +i (5.5.60)

p2hR| K,(AR)

Approximations similar to Equations (5.5.54) through (5.5.59) can also
be made to Equation (5.5.60).

) [ARKO(AR)+2]_
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Chapter 6
Piezoelectric Beams

In this chapter equations for the extension and flexure with shear
deformations of electroelastic beams with a rectangular cross section are
derived from the three-dimensional equations by double power series
expansions in the thickness and width directions. The theory for coupled
flexure and thickness-shear of an elastic beam was developed by
Timoshenko before the corresponding plate theory. The study of high
frequency extensional vibrations of elastic beams began with [62,63].
Similar to the situation for extensional vibrations of plates [33,34], the
dispersion relations of the equations in [62] lack a complex branch, and
[63] removes this deficiency. A high frequency theory for torsion is
given in [64], which takes into consideration the deformation of a cross
section. Power series expansions were used to obtain one-dimensional
equations for elastic [65] and piezoelectric beams [66,24]. The material
in this chapter is from [24,67-69]. Beams under biasing fields can be
found in [70].

6.1 Power Series Expansion

Consider a piezoelectric beam with a rectangular cross section as
shown in Figure 6.1.1. It is assumed that the beam has a slender shape
with a >> b, c. The coordinate system consists of the centroidal principal
axes.

x3! /X2

X
2c !

2a 2b

Figure 6.1.1. A piezoelectric beam with a rectangular cross section.
225
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To develop a one-dimensional theory, we make the following expansions
of the mechanical displacement vector and the electrostatic potential:

= D x5 u™ (0, =D x7x¢"(x,0).  (6.1.1)

m,n=0 m,n=0

Then the strains and the electric field can be written as

sz x5 85™m, E, = 2x2 xJ Emm (6.12)

m,n=0 m,n=0

where the strains and the electric field of various orders are as follows:
Sl](m,n) _ [u(m 1) + u(m n) + (m + 1)(5i2u§m+l,n) + 5j2ui(m+l,n))
(m,n+1) (m,n+1)
+(n+ 1)(5 3U; +0,3u; ) (6.1.3)

E(™ =" — 5, (m+ D™ - 53 (n+ D",

The one-dimensional equations of motion and electrostatics are obtained
from the variational principle in Equation (1.2.26)

]—i(mln) mTz(m—l ) nT(mn 1) +F(mn) _ sz (rs)
Js J ’

mnrs j

rs=0 (6 1 4)
D™ —mD{" M — g™ 4 pmnd = g,

where the stress and the electric displacement of various orders are
defined by

(6.1.5)

A = 4bc is the cross sectional area. The surface traction, surface charge
and body force of various orders are

Fm) =8 [ 03, ) - (CD7T; ()

+c" J._:[Ty (C)_(_l)” ]’;U (—-c)]xg'dxz + L pfjxsnx;dA
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D = [ [D,(8)~ (1) Dy (-b)je,

. (6.1.6)
+¢" [ [Dy(@) = (-1 Dy(-o )y,
B.»s 1s a geometric quantity given by
anrs = .[4 dA
4br+m+1cs+n+1 (6.1.7)
, m+r, n+s even,
SFr+m+)(s+n+l)
0, else

The one-dimensional constitutive relations take the following form:

T(m " = Z anrs (cykIS(r g klj Elgr J‘))

r,s=0

(6.1.8)
D(m " = z anrs (etkIS(r ) + i El(cr’s) )
r,s=0
Or, with the compressed matrix notation, for p, ¢ = 1-6
T(m n) z anrs (cpq Slgr S) elp Ei(r’S) )5
=0 (6.1.9)

D(m n) z anrs (e S(r S) + glk Elgr’S) )'

P p
r,s=0

The above constitutive relations are not ready to be used. Important
adjustments are necessary which will be performed later. Since
piezoelectric materials are anisotropic, couplings among extension,
flexure and torsion may occur due to anisotropy. For anisotropic beams,
although various types of deformations may couple, usually there still
exist modes which are essentially extensional or essentially flexural,
which are the modes we are interested in. The essentially torsional modes
will not be treated in this book.

6.2 Zero-Order Theory for Extension

First we extract a zero-order theory for extension from the general
expansions.
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6.2.1 Equations for zero-order theory

For a zero-order theory we make the truncation

- 5,(0,0 1,0 01
uj=u§. )(xl,t)+x2u§ )(xl,t)+x3u5. )(x,,t),

~ (0,0 1,0 0,1
¢=¢( )(xlst)+x2¢( )(xlst)+x3¢( )(xlat)9

where u{"® and u{>" are needed to describe Poisson’s effects during

extension. They cannot be directly set to zero, but will be eliminated later
by stress relaxations. An equation for the extensional displacement %*%

will be obtained. From Equations (6.1.3) and (6.2.1), the zero-order
strains and the electric fields to be considered are

~ (0,0
S, =89,

(6.2.1)

(6.2.2)
E, = EXY +x, B + x, EOY,
where
0,0 0,0 0 _ .10 0) _ . (0,1
SO0 =ull”, P =ul®, S =,
S(O,O) - 2S(0,0) — u(O,l) + u(l,O)’
4 23 2 3 (6.2.3)

SO0 = 2880 = 440 1+ 40D,

SO0 22520 =ul? +ul?,

E®O = _ ¢,(10’0): EQO = 400 gOO __g00
EMO = _ ¢’(11,0), ESO = 2430 —g ELO - 40D g (6.24)
E®D = _ ¢,(10’1)’ EQD = g0 _g EOY = _240D_ ¢,

From Equation (6.1.4) the equation for extension and electrostatics are

50 + 9 = 4pbcii{™? (6.2.5)

DE® + OO =,
Dl()ll,O) — DY 4 pto —q, (6.2.6)

DOV _ @Y 4 pO — g
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If there are electrodes present, some of the equations in Equation (6.2.6)
need to be dropped or adjusted, as in the third section of the second
chapter. The zero-order constitutive relations are obtained from Equation
(6.1.9) by settingm=n=0andr=5=0

T 0.0 - 4bc(c g S ;0 0 _ €y E,(0 0))
0,0) _ (0,0) (0,0) (6.2.7)
D, 4bc(e,qS gt 8,kE P ).

Equation (6.2.7) should be adjusted by setting the following zero-order
stresses to zero

T2(0,0) _ T3(°’°) _ T4(°'°) _ TS(O,O) _ TG(O,O) -0, (6.2.8)

In this case it is more convenient to re-derive the beam constitutive
relations from the following three-dimensional constitutive relations:
S, =58, T, +d,E,,
r (6.2.9)
D, =d,T,+¢;E,.
Within the approximation we are interested in, from Equation (6.2.2)
SO =5 T +d (ESY +%,EM” + x,EPV), 62.10)
D, =d,T, + &, (E®” + x,E®” + x,E™D), o

Integrating Equation (6.2.10) over the cross section of the beam, we
obtain

4bcS\Y =5, T + 4bcd,  EY
s 10 +4bed,  ELO,
(0,0) _ 0,0) T 1(0,0)
D> =d, T,"" +4bce E;

_ (0,0 T (0,0
=d, 1" +4bce [ E™.

62.11)

From Equation (6.2.11);, forp =1
4bcSOY = 5,9 + 4bcd, E*Y, (6.2.12)
which can be inverted to give the mechanical constitutive relation for
extension
7O = 4bc (SO0 _ g, EO)
S (6.2.13)
= 4bc(C, 5" - &, EXY),
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where

ey =l, n _u (6.2.14)

S ST

Substitution of Equation (6.2.13) into Equation (6.2.11), results in the
following electric constitutive relations:

DY =d, " + 4bcs [ EY

=d, ﬂ(sf""” —dyEX0)+ 4bee B

i}l Py (6.2.15)
— 4bc_ilS1(0,0) + 4bc(81'7l; _“a%n )EIEO,O)
S 51

= 4bc(@, S{™ + 8, E(),
where
~ T di 1 dkl

8ik=8ik _S—' . (6.2.16)
11

The first-order constitutive relations needed are approximated by

3
Dpo = 22E s5ggo, pon = gipe. (621)

In summary, we have
T + RO = 4pbeii™ (6.2.18)

D{® + DY =0,
D1(,11,0) ~DPY 4+ OO =g, (6.2.19)

DEY _ DO 1 PO =,

IO = 4o, SO0 ~ 2, ELY), (6220
DY = 4bc(e, S + E,E) (6.2.21)

DO _ 4b’c gSECO DO - 4bc® eSEOY, (6.2.22)
I 3 4 3
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SO0 =u9, (6.2.23)

0,0 0,0 0,0) _ 1,0 0,0) _ 0,1
E®D =40, EPO =409, EPY =-¢00,

3

EMD =00 gD =0, E{O =0, (6.2.24)
E](O,l) — _¢’(10,1)’ E§0,1) - 0, E:EO,I) — 0,

~ 1 ~ dy ~ _ 1 _ dydy
Cu="" € =" Ex=¢&y .
11 S BN

(6.2.25)

With successive substitutions, Equations (6.2.18) and (6.2.19) can be
written as four equations for u,®”, ¢®%, ¢*” and ¢*". For end
conditions we can prescribe

Tl(O,O) or ul(0,0), ¢(0,0) or D](O,O)’

.0 (1.0) ©,1) ©1) (6.2.26)
¢ or Dl ’ ¢ or Dl .

6.2.2 Equations for ceramic beams

We discuss two cases of thickness poling and axial poling,
respectively.

6.2.2.1 Thickness poling
Consider a ceramic beam poled in the x; direction (see Figure 6.2.1).

"l m

I
2c I P *1

3 2a b

Figure 6.2.1. A ceramic beam poled in the x; direction.
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The material matrices are given in Equation (2.4.87). Then from

Equation (6.2.14) we have

1 d
~ _ ~ = ~ _ 43
ch=—, €;=¢€;=0, e =—,
1 i
&n 00 &n= &
[exl=| 0 &, 0 -~ _ ¢ dydy
- €33= &33
0 0 &5y S

The constitutive relations needed are

0,0 5 (00) > 401
T )=4bc(c”u1(,1 ) +2,60),

DO = —4be g0,
DY = _abcE, o™,

0,0 ~ (0,0) ~ (0,
D§ ) =4bc(e31u1(,1 )_333¢( ),

4b c s¢(1 0 D§1,0) =D§1,0) =0,

D](O,l) -

4bC3 S 4(0,1 0,1 0,1
3 511¢,(1’)= DY =DV =0,

The equations of motion and charge are

~ (0,0)  ~ 4(01 0,0) _ ..(0,0
4bc(cuul(,l’l) +‘331415,(1 ))+F1( )—4pbcu,( ),
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11¢(0 D 4bc(e31u(° 0 —533¢(0’1))+D(0’1) =

6.2.27)

(6.2.28)

(6.2.29)

(6.2.30)

(6.2.31)

(6.2.32)

(6.2.33)
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6.2.2.2 Axial poling

Next consider a ceramic beam poled in the x, direction (see Figure
6.2.2).

x3I /xz

X1

2c —_— P

3 2a b

Figure 6.2.2. A ceramic beam poled in the x; direction.

The material matrices are given by Equation (2.4.97). From Equation
(6.2.14) we have

~ 1 —~ d - ~
h=—, g =—2, & =¢, =0, (6.2.34)
S33 §33
Ell 0 0 ~ _ T d33d33
~ ~ =y ——
[xl=| 0 & 0| S33 (6.2.35)

~ ~ _ T ~ _ T
0 0 &5 =&, €33= &
The constitutive relations are

{09 = e + 8,40 (6236)

0,0 ~ 00 ~ (0,0

Dl( ) = 4bc(e”u,(,l ) —8”¢’(1 )),

DI = _apez, g0, (6237)
D§0,0) = _4b02:22¢(0,1) )
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4bcs

DI(I,O) ¢(1 0), Dél,O) =D§1,0) — 0,

3
Dl(o’l) - 4b30

S 4(0,1 1,0 1,0
& ¢,(1 ), D( ) _D( ) = 0.
The equations of motion and Charge are

4be(SultY +6,657) + FO = 4pbcii®™

~ 00 =~ 4000 0,0
4bc(e”u1(1 )_311¢,(11 )+ D% =y,
4b 4 S

5850 +4bczy, ¢ + D =0,

33¢<° D +4bcgy g + DOV = 0.

6.2.3 Extensional vibration of a ceramic beam

(6.2.38)

(6.2.39)

(6.2.40)

Consider a ceramic beam poled in the x; direction as shown in

Figure 6.2.3.

x3! /xz

} 2c IP

2a

2b

X1

Figure 6.2.3. A ceramic beam poled in the x; direction.

We assume that g >> b >> ¢. The two ends of the beam and the lateral
surfaces are traction-free. If the surfaces of the areas at x; =tc are

fully electroded with a driving voltage £V /2 across the electrodes,

the electric potentials are

g0 =0, ¢V =V/2¢.
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From Equations (6.2.32) and (6.2.29) we have the following boundary
value problem:

~ ., (0,0) . :4(0,0)
¥ =P

IO = 4be(@,u®® +2,4°Y) =0, x, =+a.

—a<x <a,
(6.2.42)

Equation (6.2.42) shows that the applied voltage effectively acts like two
extensional end forces on the beam. For free vibrations, ¥ = 0 and the
electrodes are shorted. We look for free vibration solutions in the form

u®V (x,,0) = u, (x,) exp(iat) . (6.2.43)
Then the eigenvalue problem is
Uy + po’s,u =0, —a<x <a,

(6.2.44)
u; =0, x =za

The solution of w= 0 and u = constant represents a rigid body mode. For
the rest of the modes we try u = sinkx;. Then, from Equation (6.2.44),,

k= a),/ psy, - To satisty Equation (6.2.44), we must have

coska=0, = k(,,)a=%, n=135,, (6.2.45)
or
Oy P =T, @y = e, B =135, (6.2.46)
2 2aq psyy

Similarly, by considering u = coskx;, the following frequencies can be
determined:

o =T
(O >
2aypsy,

The frequencies in Equations (6.2.46) and (6.2.47) are integral multiples
of @, and are called harmonics. @, is called the fundamental and the

rest are called the overtones. These results are the same as those in [9].

n=246, (6.2.47)

6.3 First-Order Theory

Next we truncate the general expansions to obtain a first-order theory
for coupled extension, flexure, thickness-shear and width-shear [24].
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6.3.1 Coupled extension, flexure and shear

For a first-order theory, to include all first-order strains, we make the
following truncations:

2 (02)

(0,0) (1 0) (0 1) (2,0) (l 1)
Uy U7 + XU + XU +xu + Xy X3u ;0 + XU
/ " (6.3.1)

~ 40,0 1,0 0,1
¢=¢( )+x2¢( )+x3¢( ),

(1,0) (0,2)

and u;

where u; R

, Uy are needed to describe Poisson’s

effects accompanymg extension and flexure. They cannot be directly set

to zero, but will be eliminated later by stress relaxations. Equations for

(0,0) (0,0)

the extensional displacement u, and

(0,0)

, flexural displacements u;
, and thickness-shear and width-shear displacements u{"® and

ul(0 D will be obtained. From Equations (6.1.3) and (6.3.1), the strains
and electric fields are
S; =8PV 41,85 + %, 880,

= (63.2)
E, = E®" + x,E0® + x, E®D,

where the zero-order strains are given by

S](O,O) (0,0) S(O) ugl,O) S§(3)) - u§0,1),

Uy’ s
Sio,O) 2 S(o 0 _ 0,1) +u(1,0)

SO0 2500 _ u§01 0 4 @D (6.3.3)

0,0 0.0 0,0 1,0
S( R S( ) — ugl ) 4+ u( )
For the first-order strains, only the following expressions are needed:

SO = w0, (6.3.4)

Sl(o,l) - ul(g,l) . (6.3.5)

The rest of the first-order strains will be eliminated by stress relaxations.
The relevant electric fields are
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0,0 0,0 0,0) _ 1,0 0,0) _ 0,1)
El( ).___¢,(1 )’ E§ )__¢( ), E3( )__¢( ,
EM =g, E{O =240 =0, E{MY =44 =0, (63.6)
El(O,l) — ~¢’(10,1), Eéo,l) — _¢(1,1) — O, E3(0’1) - __2¢(0,2)= 0.

0,0)

b4

We keep the equations of motion corresponding to the extension u,
flexure 1,°” and #;%?, and shear deformations """ and u,®":

TP + KO = pdii*®,

TP + K = i,

TS50 + F = paiil™, (6.3.7)
T T30 + R = pari,

ISP T30 + K = par i,

where
A=4bc, r] =c*/3, rl=b*/3. (6.3.8)

7, and r3 are the radii of gyration of the cross section about the x, and x;
axes. For electrostatics we keep the equations for ¢, o0, 0D

DO 4 DO — g,
Dl(,lfo) _D§0,O) + DM =, (6.3.9)
Dl(,(l)’l) _D§0,0) + DO _

For the zero-order mechanical constitutive relations we have, from

Equation (6.1.8);, form=n=0,
7% = 4bc(c,, S — e, E*?) . (6.3.10)

Equation (6.3.10) should be adjusted by setting the following zero-order
contour stresses to zero [65]

%0 =79 =79 =, (63.11)
which permits the free development of the corresponding zero-order
contour strains. Equation (6.3.11) will be used to eliminate ${*¥, 59

and S 50’0) from Equation (6.3.10). In view of the conditions in Equation
(6.3.11), we now introduce an index convention which will be of
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considerable use to us in the sequel. The convention is that we let the
subscripts o, B take the values 1, 5, 6 and A, y, v take the remaining
values 2, 3, 4. Then Equation (6.3.10) can be written as

T = 4be(c, ;850 +¢,, SO — e, EO), 63.12)
T = 4bc(c, 585" +¢,,S00 e, EY).
With this convention Equation (6.3.11) can be written as
T =0, (6.3.13)

which implies, with Equation (6.3.12),, that

4bcS” = —4becyye,,S$0 +4becle EY (6.3.14)
where c;:, is the matrix inverse of ¢, :
CuCoy =0y - (6.3.15)

Substitution of Equation (6.3.14) into Equation (6.3.12), yields the
relaxed zero-order mechanical constitutive relations

TOEO,O) - 4bc(aaﬁS/(io’0) E©0 ), (6.3.16)

1a I

where

- 1 - -1

Cop =Cap —CarCiuCpup> €ia =C€ig ~€y,CuCag- 6.3.17)
For the zero-order electric constitutive relations we begin with Equation
(6.1.8y, form=n=0

©.0) _ (0,0) (0,0)
DO = 4bc(e, SO0 + £, EY) (6.3.18)
= 4bc(e,, SOV + 2,80 + £, EOD).

ia“ a

Substituting Equation (6.3.14) into Equation (6.3.18), we obtain

DO = abc(e,S$0 + £, ELY), (6.3.19)
where
Ex =&y + eilc;,/lleky . (6.3.20)
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If two shear correction factors x, and «; are introduced by the

replacement of the following thickness-shear and width-shear strains in
the strain energy:

S8V 5 40,8809, SRV 5k, 859, (6.3.21)
the zero-order constitutive relations will be modified into
T(O 0) _ 4b (Ar S(O 0) E»(O’O)),

DOD — 4pegar 509 00 (6.3.22)
i - elﬂ + glkE )

Equation (6.3.22) depends on the strains S{*”, $*% and ${*”, which

are related to the extensional, flexural and shear displacements.
For the first-order mechanical constitutive relations from Equation
(6.1.8); we obtain, by setting m =1 and » =0,

T(I’O) 4b 4
3

Equation (6.3.23) should be adjusted by setting the following first-order
beam stresses to zero:

——(cpg S — e, EM). (6.3.23)

1p1

T2(1,0) - ]3(1,0) — 7:1(1,0) — TS(I,O) — ]—v6(1,0) = 0’ (6.3.24)

which permits the free development of the corresponding first-order
strains. Equation (6.3.24) can be used to eliminate S+, §{* §&9

S§1’°) and Sél'o) from Equation (6.3.23). In this case we re-derive the

beam constitutive relations from the following three-dimensional
constitutive relations:

S, =8, +d,E,,
; (6.3.25)
D, =d,.qTq +e,E,
Within the approximation we are interested in, from Equation (6.3.2)
S(O’o) + sz(l’O) + x, S(O’l)
oo Ty + i (B + %, EM + x, D), (6.3.26)
D, = d oIy + &5 (BS + 0, B8O 4 x, EOD),
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Integrating the product of Equation (6.3.26) with x, over the cross section
of the beam, we obtain

3
i”;_c SO0 —5 TO0 4 41; ¢ d,, B

4bc

1,0 10

(6.3.27)
DY _ g 700 ﬁ el EGO)
i iqt q =7

3
=, 700 4 3¢ o1 pao
i1-1 3 iy .

From Equation (6.3.27),, for p =1

4bc

—— 81 =5 0 + —=d EM?, (6.3.28)

which can be inverted to give

R = L2 (5o g, £00)
11

; (6.3.29)
_4bc

~ ¢.0) _ ¥ 1,0)
St —enEy).

Substitution of Equation (6.3.29) into Equation (6.3.27), results in the
electric constitutive relation

43¢
Di(1,0) _ di1T1(1’0) + 85 E51,0)
3

1 4b c Ab3¢
=dy ———(S"" —d, E{)+ = &, EMO
:” 3 (63.30)
- 4b cil—Sl(l’O) + 4b C (8; dlldkl )E(l 0)
3 s, 3 S

4b’c . 1,0) , ~ (1,0
= @S + &L EL).

The above first-order constitutive relation is for flexure in the x, direction.
Similarly, for flexure in the x; direction,
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T 0,1 Sv 0,1 0,1

(o, 1) _ 4bC

D™ = —— (@ S" + ELEL).

241

(63.31)

In Equations (6.3.29) through (6.3.31) only the shear strains S1(1,0) and

Sl(o,1)
have obtained
Tl(lo 9+ FOY = 40bcii™0,
IO + FPO = 4pbcii™,
Tl(fl’o) + F0 =4 pbcii{®?,

1,0 0.0 0 _ 4 .3 a0
.50 - TP + K9 =3Pb ciif"?,
4
0,1 0.0 0.1 0.1
Tl(ll) T3(1 )"‘Fl( ) —3pbc ( ),
DY + DY =y,

Dl(,ll’O) _D§0,0) + D(I,O) — O,
Dl(,(l)’l) —D3(0’0) + D(OJ) — O,

T = 4be(Cl, 85 &, E), a,B =156,

DOV = 4bc(ely ST + £, ESD),

T(l 0 _ 4b C( S(l 0) _eklE(l 0))
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(6.3.32)

(6.3.33)

(6.3.34)

(6.3.35)
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4bc
01 o _gz gl
IO = — (&, 8" -&, E®Y),
4b (6.3.36)
0,1 . C ~ 0,1 ~ 0,1
Di( )_T(eil‘gl( )+£ikE15 M),
0,0 0,0
$7 = up?, 6.3.37)
SO0 =y 00 4y OV SO0 _ 00 4,00 o
SHO =0, gOD =3O (6.3.38)

E(O,O) _ _¢(o,0), EéO,O) = g0, E(O,O) = g0,

EMO =00 EM =0, EM =0, (6.3.39)
E](O,l) — _¢,(10,1)’ E%O,]) - 0’ E§0,1) — 0’

- -1 ~ -1

caﬁ = caﬁ - ctzlc,l,uc,uﬂ s €ig T€ig — eiycplcltz ’

- -1

Ey =&y rece,, a,f=156, Auv=234, (6.3.40)

~ 1 s _dy r_dydy

Ch=—> €q=—"") Ep=&p —— .

S i S

With successive substitutions, Equations (6.3.32) and (6.3.33) can be
written as eight equations for w00 1,00 3, 00 1, L0 1y @D ¢(°’°), ¢(1’°)
and ¢*. For end conditions we can prescribe

b > >

Tl(l’o) or ul(l’o)’ Tl(°>1) or ul(o’l), (6.3.41)
¢(o,o) or DI(O,O), ¢(1,0) or D](I’O), ¢(0,1) or D}(O,l)_

TI(O’O) or ul(0,0) T6(0,0) or ug0,0) TS(O,O) or ug0,0)

6.3.2 Reduction to classical flexure

For the theory of elementary flexure without shear deformations, we
set the rotatory inertia terms in Equations (6.3.32)4s to zero:
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Tl(l ,0) T(O,O) +F(1’0) =0,

T](l(,)l,l) (0 0) F(O 1 _ O

(6.3.42)

which can be used to solve for T: 21(0’0) and T3,*". Substitute the resulting
expressions into Equations (6.3.32),3
TR + FYP + B0 = pai,

() o.n 0,0) _ .. (0,0) (6343)
i + Ry + B = pdig

which are the equations for elementary flexure. We also need to set the
zero-order shear strains to zero

SO0 = 489 4 409 =

2

(6.3.44)
SOO = 489 0D _ g,
so that the first-order flexural strains can be represented by
10) _ . (0,0 0,1 0,0
S8 =—uf3D, SOV =3P (6.3.45)

The equations for the classical theory are
5" + KOO = 4 pbeii™”,
OO 1+ F09 = 4pbii®, (6.3.46)
T(O O+ FO9 = 40bcii™?,

D{? + D% =,
DG” - DY + DY =, (6.3.47)
D(O 1) D§0,0) + D(O,l) = 0,

]'1(0,0) = 4bc("l (0,0) _ '\! E(0,0))

DY = 4bc(e), S(O O+ &, ELM), (6:348)

I =T + K9,

(6.3.49)
O =T + ROV,
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3
1,0 4b’c .. Lo) -~ 1,0
LY =—— @S -8 "),

(6.3.50)

D(1,0)_4b3c ~ o0) | &~ pO0)

; —_3"(ei1S1 +E BT,

4bcd -

100 =2 @500 -7, 50,
(6.3.51)

0,1) 4bc® O |, ~ p(01)

D> =—3—(ei1S1, +E.E),
SO0 =t SPO =i, SO = -, (6.3.52)

0,0) _ 0,0 0,0) _ 1,0 0,0y _ 0,1
E®® = g0 EOO =400 FOO o400,

2 Ed

ELD =00 - g0 — o EMO =g, (6.3.53)
EI(O,I) - _¢(10,1), EgO,l) — 0’ E§0,1) =0.
With successive substitutions, Equations (6.3.46) and (6.3.47) can be

written as six equations for w00 3,00 3,00 ¢‘°’°’, ¢(1’°) and ¢(°’1). For
end conditions we can prescribe

T](O,O) or ul(0,0) , T6(0,0) or u§0,0) , TS(O’O) or ug0,0) ,
& or W, 1Y or uy?, (6.3.54)
¢(0,0) or DI(O,O) , ¢(l,0) or DI(I,O) , ¢(0,1) or D](O,l) .

6.3.3 Thickness-shear approximation

Consider the beam in Figure 6.3.1. The material of the beam is of
general anisotropy.

6.3.3.1 Equations for coupled flexure and thickness-shear

We study motions dominated by coupled thickness-shear " and

flexure u§°’°> . The major mechanical resultants are the shear force T1(3°’°)
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and bending moment T,V . Coupling to extension is neglected. We also
assume b >> c. The beam may be electroded at x; = +c or at both ends,
but not at x, =+b. We perform the thickness-shear approximation in a

way that is sufficient for later applications to a piezoelectric transformer
[67] in this section, not in the most general manner.

1 =

X1
2¢

2a

Figure 6.3.1. A piezoelectric beam.

First we summarize the equations for coupled thickness-shear and
flexure without extension. In the absence of body and surface mechanical
loads, from Equations (6.3.7) and (6.3.9), the relevant equations of
motion and the lowest order charge equation are

T = pabeil?®,

4bc® .
ul(O,l)

T1(1(,)1’1) —T3(10’0) =p , (6.3.55)

D{? + DO =0.

When there is no extension we re-derive constitutive relations from
Sy = STy + diy By

ij i

D, =d,T, +¢c,E,.

i

(6.3.56)

The zero-order constitutive relations can be obtained by substituting
Equation (6.3.2) into Equation (6.3.56) and integrating the resulting
equation over the cross section of the beam

©,0) _ (0,0) (0,0)
4bcS " =5,,T,"" +4bcd E7,

DOO — g 7O | apooT pOO (6.3.57)
i iq* g iy .
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We keep the dominating shear force 7.>” and make the following stress
relaxation:

Y =0, g=12346. (6.3.58)
Then, for p = 5, Equation (6.3.57) becomes
4bCS§0’0) = S55T5(0’0) + 4dek5 EIEO,O) N

DO =d T + 4bce] E®D (6.3.59)
i i /A
Equation (6.3.59) can be inverted as
Ts(o’o) — ibﬁ(’(_zsgo,O) _ deSEIEO’O) ),
s
» (6.3.60)
DY = 4bc(1"i 50 +2, E®),
Sss
where x(=«,) is a shear correction factor, and
dd,
g =5UT_ _BTS (6.3.61)

Sss

Integrating the product of Equation (6.3.56); with x; over the cross
section, we obtain

3 3
——4”; Sf,°">=quT;°>‘>+-—4';° dEQV. (6.3.62)
For flexure, T*" is the dominating resultant. We make the following

stress relaxation:

TV =0, g=23456. (6.3.63)
Then, for p = 1, Equation (6.3.62) becomes
3 3
4b3“c S0 =5, OV + ——41’30 duEPY, (63.64)
which can be inverted as
3
7oy - _‘;bc (SO0 _ g E®YY. (6.3.65)
S
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The relevant strains and electric fields are

SS(O’O) ug()1 ,0) + u(O 1) S](O,l) ul((: D
’ (6.3.66)

0,0 0,0 0,0) _ 0,1 01) _ 0,1
B =407, EOD =00, 0D =400,

>

With successive substitutions, Equation (6.3.55) can be written as three
equations for u;* and ;™" as well as the electrostatic potential ¢

(0,0 0.1 0,0 0.1 (0,0
[’f (u311)+u1( ))+"d15¢( )+"'d35¢,(1 )]=pu§ ),

Sss
1 3
— @y +dy i) ~—— [ ) + ™)
Su ¢ 555 (6.3.67)
+ i + il p ) = pil*,

(0,0 0,1 0,0) ~ (01 0,0) _
2 k(i Us )+u1( ) - 511¢( ) 513¢,(1 )+ED( ) =0,

Sss5

where E{*” has been dropped in view of the ceramic piezoelectric
transformer we are going to analyze later using these equations. The
expression for D{*® in Equation (6.3.60); is not used in Equation
(6.3.67), but it is useful for determining the electric charge on an
electrode when a beam is electroded at x; = +c. For a beam electroded at
x3 = %¢, ¢*? is no more than a function of time and Equation (6.3.67); is
not needed. For an unelectroded beam, Equation (6.3.67); is needed to
determine ¢

6.3.3.2 Thickness-shear approximation

Next we study the thickness-shear approximation. When the beam is
vibrating essentially at thickness-shear modes, the coupling to flexural
motion is weak and can be eliminated by the thickness-shear
approximation. For this simplification we proceed as follows. Consider
the following simple wave solution:

{ugo,O), u1(0,1)’ ¢(0,0)’ ¢(0,1)}

6.3.68
={4, B, C, D}expli(&, +mr)]. ( )
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Substituting Equation (6.3.68) into (6.3.67), yields the following relation:

SL[Kz(—ng +iéB) — kdsEXC + Kl 5iED) = —pw® A. (6.3.69)
55
For long waves, the wave number & is small. Hence we drop the
quadratic terms of £ in Equation (6.3.69). Furthermore, since we consider
vibrations at frequencies very close to the lowest thickness-shear
frequency @. of an infinite beam, we set @’ ~ «’..in Equation (6.3.69).
We then obtain the following approximation of Equation (6.3.69):

A=- (%iEB + Kl 15i D), (6.3.70)

passs
which is equivalent to the following differential relation:
u®? = ———-—i (*ulSP + w54 P). (63.71)
PPy Sss

Substituting Equation (6.3.71) into Equation (6.3.67),, we obtain the
following equation for long thickness-shear waves:

1 3k?
40D u1(0’1)

* LH
i ¢*sss (63.72)
3xd 3:«1 o
11 o1 _ 35 (0,1
¢ - ¢( ) _ 15 ¢(0 0) (0 1)
511 C Sss
where

1 1 3k d, dy,  3K’ds
=t =—+'———2ﬂ. (6373)

2 2.2 %
S;1 S POLC Sss 81 S PWLC Sss

For the electric potential we drop the second derivative term of %Y in

Equation (6.3.67);, which is small for long waves, and obtain
dsx ~ 1
—s” uly — 5,450 -y +— ™ DY =9, (6.3.74)
55

Thus we have eliminated the flexural displacement u(o 9 and obtained

two equations, Equations (6.3.72) and (6.3.74), for the shear
displacement 4" and the electric potential ¢*”. Under the above

thickness-shear approximation, the resultants are approximated by
dropping second derivative terms
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4bc
0,0) _ 2. (01 0,0 0,1
Tl(3 )‘"“"'(K ul( )+"d15¢,§ )+’(d35¢( )),
Sss
3
0,1 4bc 0,1 0,1)
Tl(l )= - ul(,l )+d11¢,(1 )

St (6.3.75)

d
0,0 15 0,1 * (0,0 * (0]
D = 4bc(—2 1™ — £, - &30,
55

d
0,0 35 0,1 * (0,0 * (01
D§)=%d?—mf)—%@ﬁ)—&m‘5-
55

6.3.4 Equations for ceramic bimorphs

Since a uniform electric field produces strains in a piezoelectric
beam but not curvatures, a two-layered beam (bimorph) is usually used
to generate bending [68,69]. We study two cases of thickness and axial
poling below.

6.3.4.1 Thickness poling

Consider the ceramic bimorph in Figure 6.3.2. When the polarization
is reversed, the elastic and dielectric constants remain the same but the
piezoelectric constants change their signs.

X3 X2
X1
N ? P >
Vv Py 2b

2c

Figure 6.3.2. A ceramic bimorph with thickness poling.

We want to obtain one-dimensional equations for the elementary
(classical) flexural motion of the beam bimorph. The major components
of the mechanical displacement and electric potential are
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250 Mechanics of Piezoelectric Structures

(0,0)

~ 0,0
Uy (X1, Xy, %3,0) = YL (xlst)—x3u§,l )(xlat)a

~ (00
uy (%), %0, %5,8) = ulV (x,,1),

~ (00
Uy (X1, %y, %3,8) = 10 (x,1),

~ 4(00 1,0 0,
B(x1, %3, %5,0) = 600 (3, 0) + 3,800 (1, 1) + %380 (3, 1),

where the thickness- and width-stretch displacements #{"” and #{""

(6.3.76)

are not explicitly given, but they are not zero. ¢(°’°) is responsible for

the axial electric field in the x; direction, ¢(]’°) and ¢(°’1) are related to
the lateral electric fields in the x, and x; directions. Equation (6.3.76)
implies S, = x,S*” +x,5" and the following beam strains and
electric fields:

1,0) _ 0,0 0,1) _ 0,0

b

EI(O,O) — __¢’(10,0) , E§0,O) — _¢(l,0)’ E§O’O) — _¢(0,1) . (6378)

S 1(1’0) and S ,(0’1) represent bending curvatures in the x, and x; directions.

We are only interested in the zero-order electric field. The equations of

flexure and electrostatics are
1,0 10 0,0) _ -+ (0,0
Tl(l,ll) + Fl(l )+ F*0 = 4pbciil™, (63.79)
RO + ALY + B0 = 4pbeii™,

DY+ D% =0, (6.3.80)
where the equations corresponding to ¢ and ¢ are not included.

T8 and T,\"" are the bending moments in the x, and x; directions.
For long and thin beams, since 75, = T3 =0atx, =xband I33= T3, =0
at x; = *c, these stress components are also very small inside the beam
and are approximately zero everywhere. When the beam is not in pure
bending, there are shear stresses 77, and T3 related to bending which are
responsible for the shear resultants 7,-” and 7,{-”. For ceramics, shear

and extension are not coupled. Therefore, in calculating the bending
strains, the only stress component that needs to be considered is Tj;.
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Piezoelectric Beams 251

With the compact notation, T, =s;(S; —d,E,) and the bending
moment in the x, direction is

1
L0 = L T,y x,dA = _[4 S_'(Sl —dpE,)x,d4
1
(6.3.81)

2 3
X d 4b°¢c
=500 [ ZLaa-EPO [ x,Hda ==,
485 4 RY! 35

which is not coupled to the electric field considered as expected.
Similarly, the bending moment in the x; direction can be written as

1
00 = [ Tyxdd= [ —(8, - duE,)x,dd
11

2
d
—sOon [ B gq_ g0  Zu gy 6.3.82
OO, SBR[, x K (63.82)
— 41)()3 Sl(o’l) _ 202bd31 Ego,o)
3S11 T

b

which is electrically coupled to ¢®" as expected. The electric

constitutive relation of interest is found to be

3ptp

0,0) . -
DY = L DydA = L (d;,T, +¢&3,E,)dA

= |, @uT, +55,E,)dd

_ 6.3.83
= L [d313111(S1 —dyE,)+&5,E;1d4 ( )

2¢%bd -
=— 3L 5O 4 4bcE, ELD,
11

where S, = x, 5 + x,8" has been used and

~

g, =&k —dd,/s,. (6.3.84)
Within the classical theory, the transverse shearing forces in the beam are
related to bending moments by

0,0 1,0 1,0
90 =I5 + K,

(6.3 .85)
0;0 — 0,1 0,1
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252 Mechanics of Piezoelectric Structures

6.3.4.2 Axial poling

Next consider the case when the two layers of a bimorph have
opposite axial poling directions (see Figure 6.3.3).

X3 X2
X1
A —>p —>
2c
\4 P « 2b
Figure 6.3.3. A ceramic bimorph with axial poling.
In this case the beam constitutive relations take the form
709 - 4b’c SO0
35 ’
. (6.3.86)
Tl(o,l) 4bc’ S(o 1 2c? bd;, E(o 0)
S33 S33
2¢%bd
D9 = 2208 0D 4 dpe(sl, —d2 1535)ESY. (6.3.87)
S33

Equation (6.3.86) shows that 7,"" is coupled to E*? as expected.

6.3.5 A transformer — free vibration analysis

As an example, we use the beams equations developed to analyze a
piezoelectric transformer [67] (see Figure 6.3.4).

It is assumed that a,a>>b,b >>¢,¢ . The driving portion —@ <
x; < 0 is electroded at x; = £¢ , with electrodes in the areas bounded by

the thick lines. In the receiving portion 0 < x; < a, the beam is electroded
at the end x; = a. The driving portion and the receiving portion may have

slightly different thickness 2¢ and 2c, and width 2b and 2b. V; is the
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input voltage and 7 is the output voltage. The transformer is assumed to
be made of an arbitrary piezoelectric material. When it is made of
polarized ceramics, the polarizations in the driving and receiving
portions are as shown in the figure.

[ = iox -:V jox
5 ¢ Vlle ng % ¢="Ve
i X1
l2c —p 4p 2¢
$=0 i « £ > 2b

Figure 6.3.4. A thickness-shear piezoelectric transformer.

6.3.5.1 Governing equations

For the driving portion —a < x; < 0, the electric potential is the
known driving potential

o=

x32+ SV, explion),

El | (6.3.88)
% == Viexplian), ¢ =—V, explian).

The equation of motion under the thickness-shear approximation is from
Equation (6.3.72)

1 on_ 3% on _ =0 -
Uy 4 =P, —a<x <0, (6.3.89)

where we have denoted all the geometric and material parameters of the
driving portion by an over bar. The boundary condition of vanishing
shear force is, from Equation (6.3.75),

4bc ,_ = _
790 = Tbc-(xzu]@") +kd ) =0, x, =-a. (6.3.90)
Sss
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For the receiving portion 0 < x; < a, ¢ is the major part of the
electric potential. The equation of motion is from Equation (6.3.72):

1 oy 3k’ (o 1 3’fd15 (0.0) _ (o D
U T ¢
S C Ss5 ¢’ Sss

, O<x <a. (6391)

The electrostatic equation is from Equation (6.3.74):

d
—;‘ﬁuf‘}” F.0%° =0, 0<x <a, (6.3.92)
55

where the term D®? for the electric charge on the lateral surfaces x, =
+b and x3 = *c has been dropped for unelectroded surfaces. From
Equation (6.3.92) we obtain

d
¢’(10,0) - EISSK u®™ 4, (6.3.93)
11555

where C) is an integration constant. Physically C; is related to the charge
and hence the current on the electrode at x; = a. Substituting Equation
(6.3.93) into Equation (6.3.91), we obtain

2
<l - 3;2 o) 226, =i, 0<x <a
511 C Sss ¢ Sss (63.94)
1 - .
Sss 555 511555
For boundary conditions we need
Tl(30,0) 4bc (1(2 0,1 + Kd, ¢(00))
Sss
= 2B¢ (2,00 , Sss#hs ), (6.3.95)
Sss Sss

0,0 disk o1 0,0 ~
Dl( ) = 4bc (—— p ( ) 11¢,(1 )) = —£1,4bcC,.
55
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Then the boundary conditions take the following form:

T1(3°’°) =ﬂ:—c—(lc2u1(°’l) S55Kd15 355 0)=0, x =a,
Sss Sss
¢ =V, exp(iat), x, =a, (6.3.96)

400 (0") =2V, explian)

Since ¥, is unknown, some circuit condition across the receiving
electrodes is needed to determine its value. For continuity conditions we
impose

0.1 /0=y _ .0+

w"P(07) =P (0"),

) . (6.3.97)
uf‘i D7) =u"(0"),

in which the second equation is an approximation.
6.3.5.2 Free vibration analysis

Consider free vibrations for which the driving voltage ¥; or ¢ and
¢™Y vanish in the driving portion, which means that the driving
electrodes are shorted. The receiving electrodes are open with no current
or charge on the electrodes (D1(°’°) = 0). Hence C, is zero. This is the
simplest circuit condition for the receiving electrodes. Then all the
equations and boundary conditions become homogeneous. We need to
solve an eigenvalue problem for o’

._2 *
oy , 3K OK Sy 01 _ ==t 2 (0)) _ —
1(11) s y— ( )=P511w “1( ),—-a<x1<0,
€ Sss
2 *
on , 3K 811 (o1 * 2 (0,1
fu’+———czs, u™ = ps\0’u{* 0 < x, <a, (6.3.98)
55

™ (=a) = 0,u{*" (a) =0,
u®™D(07) =u{® (0*)u{" (07) =43 (0%).

We try the following solution which already satisfies the two boundary
conditions in (6.3.98); 4 at the two ends of the transformer:

u(o’l) — {Asinl_‘-(xl + a_),_a < xl < O, (63_99)

: Bsink(a—x,),0<x, <a,
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where 4 , B, k and k are undetermined constants. Substitution of
Equation (6.3.99) into Equation (6.3.98), , yields

3k . 3k

Sk =51, (pw’ —5=), (6.3.100)

€ Sss € Sss

which shows that the solution of ;™ may have exponential or

sinusoidal behaviors depending on the signs of k2 and k*. This is related
to the energy-trapping phenomenon of thickness-shear modes. For the
operating mode of a transformer, sinusoidal behavior in both portions is

desired. Hence we consider the case when both & 2 and £* are positive:

—2 2
"wz—_B—f_-—>0, pwz—%w. (6.3.101)
C 855 C™ 855

Substituting Equation (6.3.99) into the continuity conditions in Equation
(6.3.98)s 6 we have

Asin(ka) = Bsin(ka),
kAcos(k@) = —Bk cos(ka),
which, for nontrivial solutions of 4 and B, yields the frequency equation
tan(ka) __k (6.3.103)
tan(ka) k
The corresponding mode shape function is

(6.3.102)

4O = sin(ka)
! sink(a—x,)
sin(ka)
Then the electric potential can be found as

500 _ 0, —a<x <0,
" |cos k(a—x,)—cos(ka), 0<x <a.

(6.3.104)
, O<x <a.

(6.3.105)

For a transformer it is also desired that the wave number k of the
operating mode in the receiving portion satisfies
2
K =5 (pa’ - 32", y< (&2, (6.3.106)
c a

Sss5
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so that the receiving portion is not longer than one-half of the wave
length in the x, direction of the thickness-shear mode. Then the shear
deformation does not change its sign and the voltage generated by the
shear deformation accumulates spatially without cancellation. Solutions
satisfying this condition will be obtained for a ceramic transformer below.

6.3.5.3 Ceramic transformers

Consider a ceramic transformer of constant width b = b . The driving
portion is polarized in the x, direction and the receiving portion is
polarized in the x; direction. For ceramics, usually

|dys P day |, dys > dl. (6.3.107)
For example,
dis dy dy
PZT-2 440 -60 152
PZT-5H 741 -274 593
PZT-7A 362 -60 150

This suggests that the thickness-shear transformer discussed here which
operates with d;s may be more effective in transforming than the
conventional Rosen extensional transformers which use d3; and ds; [9].
For a ceramic transformer, the equations derived above take specific
forms. We have

(6.3.108)

—2 71'2 —
=—_—2——-——', -a <x1<0,
4C”psy,

2 x’
woo = 2 2 b
4c” P84 (1= kis
because for free vibrations the electrodes in the driving portion are
shorted and the electrodes for the receiving portion are open. In addition,

o0

(6.3.109)

0<x <a,

1 1 3! 1 721

S 5w pBlTish sy 12 59

11 33 C) 44 33 44 , (6.3.110)
11 3x! 1 2% 1=k

. 2 22
S;p S POLC Sy sy 120 sy

b
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d,.d
~ _ T 15%5 _ 2
&n=én— =¢&(1-kj5),
Sa4

6.3.111

L1,k 1 e
S;5 Sa4 €154 3441“"125’
_2 * 2 EZ * 2
k” =s,(po “T")=§11P((02—5w),

(6.3.112)

2 . 2 3k 2 * 2 2
k™ =85, (po° —==-)=s;p(@" - @)
55
First consider the case of a transformer with constant thickness ¢ = ¢
and equal length of the driving and receiving portions a =a . We have
the inequality

—2 ”2 2 71'2

= <@, = .
T Actpsy, T4 psy (- ks

Before we start solving the frequency equation, we note that the
transformer is assumed to be long and, for voltage accumulation, the
entire receiving portion of the transformer should be vibrating in phase.
Therefore, the transformer should be vibrating at a frequency very close
to and slightly higher than the infinite beam thickness-shear frequency of
the receiving portion, with a very small wave number k. Hence we
should approximately have

(6.3.113)

2
2 2 T
@ =

N 402/0944 @ _k125) .
Then, at this frequency, for the driving portion, a finite wave number can
be approximately determined by

K =5p@ -22)~ 5, p(0l - 02). (63.115)

(6.3.114)

For PZT-5H, by trial and error, it can be quickly found that, when a
=20 cm and ¢ = 1 cm, the first root of the frequency equation is 59.66
kHz. It is indeed very close to, and slightly higher than the infinite beam
frequency .. of the receiving portion, which is found to be 59.31 kHz.
We then have ka = 5.47 and ka = 0.86x. The corresponding shear and

potential distributions are shown in Figure 6.3.5. The electric potential
rises in the receiving portion and a voltage is generated between x; = 0
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and x; = a. Hence this mode can be used as an operating mode of the
transformer. While in the receiving portion the shear deformation does
not change sign along the beam and voltage is accumulated, in the
driving portion the shear changes sign a few times. This is fine for a
transformer, because this mode can be excited by a few pairs of
electrodes in the driving portion with alternating signs of driving
voltages among pairs of driving electrodes. Transformers with a short
driving portion can also be designed, with fewer pairs of driving
electrodes.

1 (0,0
u 1( )’¢( )
2.5 1

AN
N 2 0 27 VI

-1.5

-+

Figure 6.3.5. Shear and potential distributions of the operating mode
(c=c). ul(’) is marked by triangles, and ¢% by circles.

The reason that the transformer needs several pairs of driving
electrodes is the change of sign of the shear deformation in the driving
portion. This is a result of the fact that the infinite beam frequency of the
driving portion is lower than that of the receiving portion. The infinite
beam frequencies of the driving and receiving portions can be made
close by adjusting ¢ and c¢. This can lead to a reduction of the wave
number in the driving portion and hence fewer pairs of driving electrodes.
To lower the infinite beam shear frequency of the receiving portion, we
increase the beam thickness ¢ of the receiving portion such that ¢ <c,
where ¢ and ¢ will be properly adjusted to suit our need as follows. We
consider the case of equal length of the driving and receiving portions
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(a=a). It can be verified that the following is a limit solution to the
frequency equation

+
ka = %, tan(ka) = —oo,

(6.3.116)
ka = ﬁT tan(ka) = co.
Then
k’a® =a’s; p(0® - @2)=n?/4,
T A i j) " (6.3.117)
k*a’ =a’s| | p(0’ -wl)=7n"14,
which leads to the frequency
2 2
W =B = 0+ (6.3.118)
4a’s,p 4a’s,p
From Equations (6.3.118) and (6.3.109) we have the condition
1 1 1 1
+ = —> (6.3.119)

= +
=2 2% 2 2
Csyy a'sy  csu(l-ks) a's,
which can be satisfied by adjusting the geometrical parameters ¢ and c.

The mode shapes of u{" and ¢ are shown in Figure 6.3.6, which can
be driven by one pair of electrodes.

1) (0,0
ul( )’¢( )

x/a

T 1 1

0.4 0.8 1.2

-1.2

Figure 6.3.6. Shear and potential distributions of the operating mode
(¢ <c). uV is marked by triangles, and ¢% by circles.
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Similarly, it can be verified that the following is also a limit solution
to the frequency equation

ka=r*, tan(ka)=0",

(6.3.120)
ka=7n", tan(ka)=0",
F2a? = a’5 p(e? - @2) =12,
@ =asup i ;’) 2 (6.3.121)
k*a® =a2s”p((o —0,)=7",
2 2
O =B+~ = 0} e, (6.3.122)
asyp a syp
! ! ! ! (6.3.123)

+ = + .
2 257 2 2 2.*
4c7sy  a'sy  Actsyu(l-kis) a'sy

The mode shapes for the shear deformation and electric potential in this

case is shown in Figure 6.3.7, which can also be driven by one pair of
electrodes.

1 0,0
ul( )’¢( )

1.2 7

a2 Xila
L)

-1.2 -0.6 0 0.6 12

Figure 6.3.7. Shear and potential distributions of the operating mode
(c<c). u,a) is marked by triangles, and ¢‘*® by circles.
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Chapter 7
Piezoelectric Rings

In this chapter we consider motions of a piezoelectric ring. Although
the ring is in a plane, its motion can be three-dimensional. We are
interested in coupled extensional and flexural motions with shear
deformations, but not torsion. Most of the equations for rings can be
obtained from the shell equations, but the constitutive relations should be
from the beams equations.

7.1 First-Order Theory

Consider a differential element of a ring in the x;-x; plane as shown
in Figure 7.1.1. For a ring, cylindrical coordinates (6,z,r) corresponding
to (@, ,a,,a;) are sufficient. Specifically, x; =rcosé, x, =rsiné, and

x2=Z-

X1

(05)
o o3

(0]
2b —>

'\ 2c
R1=R

Cross section

v

X3

Figure 7.1.1. An element of a ring.

262
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Piezoelectric Rings 263

For a first-order shear deformation theory we make the following
expansions of the displacement and electric potential:

u; "u(oo)(al,t)"'az (10)(a1,t)+a3 (01)(‘11,’)
+aju (2(’)(czl,t)+azae3u(l )(al,t)+a3u(°2)(al,t) (7.1.1)
~ 40 1,0 0,1

8240 (@0 + a0 (@, 0 + 2y (a1,

where the thickness-stretch displacements #{"” and u{"" will be

eliminated by stress relaxations. The geometry of a ring can be reduced
from that of a shell with

4, =R, 4, =],
(7.1.2)
R =R, R,=c.
Then the strains and electric field can be written as:
Su =83 +a,80% + a8,
0,0 1,0) o, (7‘1'3)
E, =E " +a,E;" +o,E .
The zero-order strains are
0,0 0,0
0.0 _ 1 6u( ) "g : 0,0) __ (1,0)
11 — =, Sy =u; ",
A1 oo, R
S(o 0 _ u§o,1), 2S§g,0) - u§°’1) + u§1’°),
(0,0) (0,0) (7.1.4)
0,00 _ (o) W 1 Ou;
28500 =u{®) - + ,

R AT oa,

0,0

©0) _ 5y 10) 1 oud™?
25 L N
A1 oo,

S, S8 and S will be eliminated by stress relaxations. For the first-
order stralns, we only need the following expressions:

4, da, R 4, dq
01 0,1 0,1
S(O 1) 1 6u( ) + ug ) ~ .L 6u1( ) )

1,0 1,0 1,0
§01.0) _ 1o uf® 1 o™

2

(7.1.5)

4, da R 4, dq
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The rest of the first-order strains will be eliminated by stress relaxations.
The relevant electric fields are

El(O,O) __

El(l,o) - _

E](O,]) —_

0
L6¢( ) ’ E§°’°) _ _¢(1,0)’ E3(0,0) -
4, Oa,
1,0
L6¢( ) ’ E§1’0) =0, E§1’°) =0,
4, O
0.1
_1_6¢( ) , EMD =0, EQD =0,
4, Oa
The equations of motion and the charge equations are
N,
L Ny + Q13 + F0 = 4 pbcii(™?,
4, oa,

and

1 oMS”

LA
AT oa, R
1 an"" 1

"R

1 90, + O = 4phcii®®

4, oo,

190 _ Ny % + % = 4pbcii{™?,

4, Oa;

4pbc ..
- + F (1,0) = _u(l’o)’
[] a 1 QIZ 1 3 1

1 oMY 4pbc’ ..
A 6(;1 -0 + K =73 i,
1 1
0,0)
Aiagl 112D(0 9 4 peo g,
1 0y
1,0)
1 6D1( D(l 0) Dgo,O) +D0O ¢,

4, Oa;
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where the resultants are defined by
N0, Ot = {TI(IO)’T1(20) 5711(30)} = L T, d4,
M =T L T, alaldA, (7.1.10)
D™ = L DalaldA.
A = 4bc is the cross sectional area. The surface and body loads are
Fimm =" [ (1, (8) - ()" T, (-b)laj da
+e [ 11,00~ (1" Ty (oYl dar,
+ L pfaraldd, (7.1.11)

D" = p" [ [D,(8)~ (=) Dy (-b)la}der,
+e" [ IDy(@)~(~1)" Dy(-0)laf da.

The constitutive relations are the same as those in the first-order theory
of beams

T = 4bc(c,,S 3" ~ &, EC),

ia™i

a’ﬂ = 15556’
D(0,0) — 4bc(é~l S(O’O) +7 E(O'O)) (7112)
A BB wly ")

3
10 _4°¢ ~ a0 _5 pao
LY =—=@uS -8 E”),

(7.1.13)
4p3c

1,0) _ ~ Q(L0) , ~ (10
Di( )—_—3 (ei]SI( )+8ikEIE M,

4hc?
01) _ ~ «(0]) ~ (01
Tl( ) —_3—(01151( ) _eilEi( )),

(7.1.14)
(0’1) _ 4bc3

~ (01 |, ~ (0,1
D T(e,-lSl(’)+£,.kE,£ )),

1
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-~ _ - -~ _ a1

Cop =Cap —ConCauCups €ia = C€ia ~€yuCurCia>

- |

Ey =€yx teyce, a,f=156 A,uv=234, (7.1.15)
1 o dy o p dydy

Ch=—> eu=—"", Ex=¢&
S S S
With successive substitutions, Equations (7.1.7) through (7.1.9) can be
written as eight equations for 000, 4, @0 3,00 4 40, 0D ¢(°’°), ¢(1’°)

and ¢, For end conditions we can prescribe

b

TI(O,O) or uI(O,O) T6(0,0) or u§0,0) , TS(O,O) or ug0,0)

3

T8 or uM, 1OV or u®, (7.1.16)
00 or DOO. 40O o DO gOD o pOD,

7.2 Classical Theory

The classical theory for flexure can be obtained from the first-order
theory by two approximations, i.e., dropping the rotatory inertia and
making the shear strains vanish. The resulting equations are

1 ON,

7— aall Oi— +F1(0 9 = 4pbeii™?,

1 anz +F(° 0 = 4 pbciil™, (7.2.1)
A, oa,

RGO -N,—= ! —+ F® = 4p0bcii,

4, 0q, R

0,0)
L aD%Y L peo 4 poo g,

4, Og
1,0)
A;a?( 11e D{O — DP9 4 po) g, (722)
1 0
1 6D(°’) 1
? a] 2 D(O 1 D;O’O) +D(0,]) — 0’
1 0
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]’;(0,0) — 4bc("l S(0,0) — "! E-(O’O)),

23
D9 = 4bc(e) S + &, EXY), (7123
3
109 =222 @ 500 -7, B0,
(7.2.4)
0 _ 4b € = o) 1.9)
D7 =—— (&, 817 + &, ET),
4bc’ ~
L) = ‘_(Cnsl(o’l) ~g, ED),
(7.2.5)
pob _ 4bc ¢ (@ IS(OI) +£kE(°l))
1 aMl 1,0 1 oM 0,1
= + F00 =—1 4 FOD 7.2.6
On = Al 34, 1 O 4 o, 1 ( )
S(O 0) 1 6u(0 0 ugo’o)
A1 aal R’ (12.7)
ou®® 0,1) -
10 ~ 1 0% on . 1 0y
Sll Y Sll T
T4, Oa A1 oq,
(0,0) (0,0 (0,0)
DL S L S D N S (7.2.8)
A1 60:, 4, Oaq R

With successive substitutions, Equations (7.2.1) and (7.2.2) can be
written as six equations for w0, 4,00 4,00 ¢(0’°), ¢(1’°) and ¢(°’1). For
end conditions we can prescribe

T](O’O) or ul(0,0) , Tl(o ,0) or ug0,0) TlgO,O) or u§0,0)

> b

ou 0,0) ou 0,0)
oq, oa,

¢(0,0) or DI(O,O) , ¢(1,0) or DI(I,O) , ¢(0,1) or D](O,l) .
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A more physical development of the classical theory of a piezoelectric
ring can be found in [71].

7.3 Radial Vibration of a Ceramic Ring

As an application of the equations obtained, consider axi-symmetric
radial vibrations of a thin ceramic ring with radial poling, electroded on
its inner and outer surfaces (see Figure 7.3.1).

2
2¢

Figure 7.3.1. A ceramic ring with radial poling.

Let R be the mean radius. We assume that R >>2b6>>2c¢ . The
electrodes are shorted so that the lowest order electric fields vanish.
From Equation (7.2.1); we have

- Ny 1 4 pbcii™® (7.3.1)
R
where
N, =T,*9 = dbce), 819, (7.3.2)
(0,0) ugo,O)
SO0 =23 7.3.3

1 > (7.3.3)

., 1
g, =—. (7.3.4)

S

1 u§0’0) 0,0 (7.3.5)
———— = U . 7 S
Sll R2 pu3
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For time-harmonic motions, the frequency is given by
1
2

0 =—
ps; R

b

which is the same as the result given in [9].

www.iran-mavad.com
2 ga (padige 5 Ol sadils g e

269

(7.3.6)



Chapter 8
Piezoelectric Parallelepipeds

In this chapter, zero-dimensional equations for motions of a
piezoelectric parallelepiped are derived from the three-dimensional
equations for linear piezoelectricity by triple power series expansions of
the mechanical displacement and electric potential in the length, width
and thickness directions. The equations obtained are convenient to use
when modeling the motion of a piezoelectric parallelepiped in a
particular vibration mode. Many piezoelectric devices are in essentially
single-mode vibrations. For these devices the zero-dimensional theory
can yield results useful for many purposes. The lowest order equations
obtained can describe motions with homogeneous deformations and
uniform electric fields. The material in this chapter is mainly from [72].

8.1 Power Series Expansion
Consider a piezoelectric rectangular parallelepiped as shown in

Figure 8.1.1. The coordinate system is formed by the centroidal principal
axes.

X2

2c ~
e 2a

21

2b

Figure 8.1.1. A rectangular piezoelectric parallelepiped.
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To develop a zero-dimensional theory, we make the following
expansions of the mechanical displacement vector and the electrostatic

potential:

u;(xg,%y,%3,0) = Zx1x2 xau(lmn)(t)

1,m,n=0

c l} Im,
¢(x1,x2,x3,t)= lexénx;l¢( mn)(t).

{,mn=0

Then the strains and the electric field can be written as

o0
! (,m,n)
lex2 X387,

I,mn=0

lexz an(l m n)

I,m,n=0

where
S(I mpn) _ [(l + 1)( §_l+1,m,n) + 5j1ui(1+1,m,n))
+ (M (O 4.5 )

+(n+1)(S5ul" ) + 8 um DY,

E(lmn) 5 (l+1)¢(l+1mn)
— 8, (m+ P — 5 (n+ gD,

8.1.1)

(8.1.2)

(8.1.3)

(8.1.4)

Substituting Equation (8.1.1) into the variational formulation of linear
piezoelectricity in Equation (1.2.26), with integration by parts, for

independent variations of é'uﬁ”'”’"’ and 8¢¢"™" | we obtain the following

zero-dimensional equations of motion and electrostatics:

_171‘(71—1,”1,7!) _ mTz(;,m—l,n) —nT3S(’m’n_l)

o0
(I’Msn) — s \P4d,
+ Fj =p zBl+p,m+q,n+ru§'p g r),

p.q,r=0
_lDl(I—l,m,n) _ngl,m—l,n) __anl,m,n—l) + D(I,m,n) —
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where the stress and the electric displacement of various orders are
defined by

T(l mn) = J- llx;”xg'
(8.1.6)
Dmm = I Dx!xTxidV.

V = 8abc is the volume of the parallelepiped. Surface traction, surface
charge and body force of various orders have the following expressions:

(,mn)y _ (,mn) (,m,n)

F ) = Tj +of | R

rimn = f dxy [ anlh, (= ) - ()T, (v = —a)la' x5 x5
+ f' dx, fcdx3[T2 (X, =B~ ()" Ty (x, = BB XX (8.1.7)
s [ [ doylTy, 0 =)~ (1" T, (xy = -0l xlxy.

(’”'") = I g’xlx;”xg‘dV,

D = [ e, [ dey[Dy (5 = )~ (1) Dy (xy = ~a)la' x5
-b —c
+ J'” _dx, r _dxy[Dy(x, =b) = (-1)" D, (x, =—b)]p" x| x} (8.1.8)

b n n_Il_m
+ fadxl I_b dxy[Dy (x5 =¢)—(=1)" Dy(x, = —c)lc"x;x; .

Bi.pmignr 18 a geometric quantity defined by

B1+p,m+q,n+r = -[V x11+px2 +qx§'+’dV
8a1+p+1bm+q+lcn+r+1 (8 1 9)
, l+p,m+q,n+reven, =
SV +p+D(m+g+D)(n+r+1)
0, else.
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The zero-dimensional constitutive relations are

l ) (p.q.r)
T( = ZBI+p m+qn+r(czjle i _'ekijEkp )s

=0
e (8.1.10)
Lmn) _ \q> s
Di( " = ZB1+p,m+q,n+r (eikISIEIP ) + gikElgp ) )s
p.g,r=0
or, with the compact matrix notation, for M, N=1,2,...,6
!
T( Jmn) ZB1+P e, n+r(cMNs(Pq N_e E(qu))’
=0
B (8.1.11)

o0
(Imn) _ (p.g.r) (p.g.7)
Di - ZBI+p,m+q,n+r (eiNSN + gikEk )
p.q,r=0
With successive substitutions, these equations can be written as ordinal
> q ry

differential equations for the mechanical displacements and electric
potentials of various orders.

8.2 Zero-Order Equations

We keep u(O 0 0) 51,0,0) , u§0,1,0) , u§0,0,1) , ¢(1,0,0) , ¢(0,1,0) , and ¢(0,0,I)

and neglect all higher order displacements and potentials. For (I,m,n) =
(0,0,0), (1,0,0), (0,1,0) and (0,0,1), we have the following equations of
motion and electrostatics:

FOO0 _ p8abciit009),

DO _ g 8.2.1H)
_T1(j0’0’0) + Fj(l,O,O) 84’ bC 5100),
3 (8.2.2)
_ D](O,O,O) + DUOO _g
~ﬂ”m+me=p§fzmM%
! / 3 (8.2.3)

_D§0,0,0) +D(0,],0) — 0,
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3
8abc ii(.o’o’l)

(0,0,0) 0,0,1) _
B A (82.4)

—D3(0’0’0) +D(0’0’1) =0.

The constitutive relations for the above equations are

TP = 8abe(cp SPO0 - e ESD),

(8.2.5)
DY =8abc(ey ST + &, EL™),
in which the zero-order strains and electric fields are given by
S](O,O,O) - u](],0,0), S§0,0,0) - ug0,0,l) +u§°’1’°),
S;O’O’O) - ugO,l,O), SS(O’O’O) — ugl,0,0) + ul(0,0,l)’ (826)

S3(0,0,0) = ug0,0,l), SéO,O,O) = ul(O,l,O) +u§1,0,0),

0,0,0 1,0,0 0,00 0,1,0 0,0,0 0,0.1
E]( ) — _¢( )’ E§ ) = -—¢( )’ E§ ) = —¢( ). (827)

(0,0,0) (1,0,0) (0,1,0)
joo U U
uﬁo'o’l) , ¢00 6O and %D "which govern the rigid body motion,
homogeneous stretching and shearing deformations of the parallelepiped
and uniform electric fields.

These equations can be written as equations for u

8.3 A Piezoelectric Gyroscope

As an application of the zero-dimensional theory developed above,
we revisit the thickness-shear ceramic plate piezoelectric gyroscope
analyzed in the fourth section of the second chapter. Consider the
rectangular ceramic plate shown in Figure 8.3.1.

The plate is poled in the thickness direction. A driving voltage V; is
applied across the lateral electrodes at x; = ta to excite the plate into
thickness-shear motion #; in the x; direction. When the plate is rotating
about the x; axis, the Coriolis force F, causes a thickness-shear motion u,
in the x, direction. This shear in the x, direction generates a voltage V>
between x, = £b, which can be used to detect the angular rate €.
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Yo

2c o

2b

Figure 8.3.1. A thickness-shear piezoelectric gyroscope.

8.3.1 Governing equations

The lowest order zero-dimensional equations in the previous section
are for a parallelepiped. In the derivation, there are no assumptions made
on the relative magnitude of the length a, width b, and thickness c. The
equations can be used to analyze the rectangular plate gyroscope in
Figure 8.3.1 as long as the plate is in almost homogeneous thickness-

shear vibration, which is the operating mode of the gyroscope. The

equations for shear motions #{**" and #{"*" are

8abc?
0,0,0) _ ..(0,0,1 . (0,0,1 2. (0,0,1
_T3(1 )—PT(ul( )“29”5 ) -0 ul( )),

8.3.1)
000 _ 8abc® .o -(0.0,) _ 2, (0,0,1)
-T. = p—3—(u2 +2Qu, -Q%u; ),

where we have included Coriolis and centripetal accelerations and
omitted the surface and body force terms which are not present in our
gyroscope problem. The coordinate system is assumed to be rotating
with the gyroscope. For piezoelectric gyroscopes, the Coriolis
acceleration is responsible for the sensing mechanism. The centripetal
acceleration can be neglected for most purposes. This is because
piezoelectric gyroscopes are small sensors operating near resonance with
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A ga Gpadiga 5 GLisadil A e



276 Mechanics of Piezoelectric Structures

high frequencies. Usually Q is much smaller than the operating
frequency. Therefore the centripetal acceleration, the third terms on the
right hand sides of Equation (8.3.1),,, which are quadratic in Q, are
small compared with the Corioils acceleration, the second terms of the
equations. The relevant constitutive relations take the following form:

0,0,0 2 o(0,0,0 0,0,0
Ts(z )=8abc(c44lc S§ )_exs’ng )),

(83.2)
Ts(lo’o’o) = 8abc(c44lc2S§0’°’°) - els’fEl(o’O’O) ),

D™ = 8abc(e,s k8% + £, ECO),
D™ =8abc(es k8" + £, ES0).

In Equations (8.3.2) and (8.3.3) we have introduced a thickness-shear
correction factor x to compensate for the error caused by truncating the

series. For a ceramic plate we have x* = 7% /12 when the plate is poled
in the thickness direction. For convenience we introduce the notation

0,0,1 0,0,1) _
ul(’ )=Ul’ ug )_UZ’

(8.3.3)

(8.3.4)
M0 =y, 124, ¢ =V, /2b.
Then
S(O,O,O) = U , S(O,O,O) =U ,
4 2 ! (8.3.5)
ELY =V, /2a, E™Y =-1,/2b.
With successive substitutions, we obtain
2
— kU, —eyskV, 12a= p%—(Ul —2Q0, -QU),
. (8.3.6)
— kU, —eyskV, 12b = p%((j2 +2QU, —QU,),
D) = 8abc(exU, —&,,V; 12a), 83.7)

D0 =8abc(esxU, —&,,V, /2b).

The total electric charge on the electrodes at x; = a or x, = b and the
electric currents flowing out of them are given by

0, =-D** [2a), Q, =-D§"" /(2b),

. (83.8)
L==0, I,=-0,.
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The driving voltage V; is usually considered known and is time-harmonic.
The sensing electrodes at x, = b are usually connected by an output
circuit with impedance Z for harmonic motions. In the special cases
when Z = 0 or oo, we have short or open output circuit with ¥, =0 or I, =
0. In general, neither V5 nor I, is known and a circuit equation is needed.
Let the known time-harmonic driving voltage be ¥, =iV, exp(iat) .
Introducing the complex notation

U, = iU, exp(ian), U, =U, exp(iar),

- — (8.3.9)
I, =1, exp(iat), V,=V,exp(iot),
we can write the circuit condition as
L=V,/Z. (8.3.10)
From Equations (8.3.7),, (8.3.8),4 and (8.3.10), we obtain
daciaeskU, —&,V, 12b)=V,/Z. (8.3.11)
Then we have the following equations:
—cu kU, —eskV, 2a
= p%(—(ozﬁl -2QaU, -Q*U)),
—cu kU, —eikV, 12b (8.3.12)

2
= ,o-‘53—(—a)2c72 —200U, -O*T,),
dacae, kU, — £, Vy 12b) =V, liZ(w).
Equation (8.3.12) represent three linear algebraic equations for U,, U,

and 7, in which 7] is the inhomogeneous driving term. In general Z is a

function of w. The specific form of this function depends on the structure
of the load circuit.

8.3.2 Free vibration

For free vibrations we set ¥; =0, which physically means that the
driving electrodes are shorted. Then Equation (8.3.12) reduces to a
system of homogeneous equations for U,, U, and ¥,. For nontrivial
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solutions, the determinant of the coefficient matrix must vanish, which
leads to the following frequency equation:

Alw) = (a)2 +Q? - a)i )2

(8.3.13)
—4Q%0° - Uw)wk(0® + Q* —w2) =0,
where we have denoted
(02 - 3044K2 /1(60) — k125
® 2 1+ Z, () Z(w)’
“ 2(@)/ Z(@) (8.3.14)
K2 = es . Z, = 1 . C, =£”4ac'
€11C44 ioC, 2b

a,, is the lowest thickness-shear resonant frequency of an elastic plate
with shear constant c,4, mass density p, and thickness 2¢. The correction
factor x makes this frequency to be the same as that obtained from the
three-dimensional equations. ks is an electro-mechanical coupling

factor that represents the strength of this coupling of the material. C, is a
static capacitance. Equation (8.3.13) can be written in the following form:

2
o’ =(1+%/1)a)i +Q? i%ﬂ,wi 1416484 Q7 (8.3.15)

2 2
A

Strictly speaking, Equation (8.3.15) is not a frequency solution to
Equation (8.3.13) because, in general, A is a function of . In the special

case of shorted output electrodes we have Z = 0, A = 0. Then Equation
(8.3.15) reduces to

w=w,1Q, (8.3.16)
which is a frequency solution. When the output electrodes are open we
have Z = oo, A = k. In this case Equation (8.3.15) also represents a
frequency solution. Piezoelectric gyroscopes usually operate under the
condition that Q << @,. From Equation (8.3.15) we can see that, for
small Q and open output electrodes, the effect of € on w is quadratic.
This is different from the special case of shorted output electrodes as
shown by Equation (8.3.16). If the load circuit is essentially capacitive
with a capacitance C, we have Z = 1/(iwC) and Z,/Z = C/C, which is
independent of @. Then Equation (8.3.15) represents a frequency
solution.
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As an example, consider PZT-5H. The relation of @ versus  for
ZIZ, =0, 0.2, and oo is plotted in Figure 8.3.2. For each value of Z, there
are two frequencies that represent the two lowest modes of thickness-
shear vibration. For the case of shorted output electrodes (Z = 0), there
are no electric fields because the driving electrodes are also shorted. In
this case the piezoelectric stiffening effect due to electric fields does not
exist. Therefore the two resonant frequencies are the same when there is
no rotation, because ceramics are transversely isotropic in the x,-x, plane.
However, rotation will cause these two frequencies to split. When the
receiving electrodes are not shorted, there is an electric field in the x,
direction that causes stiffening of the material and hence higher resonant
frequencies. In this case, even if the plate is not rotating, the two shear
frequencies are different.

W/ W
1.4 4
—-—-s—n—a—a——8——8—p—F—8—a—1
——Z7/Z,=0
1.2 + ——27/7,=0.2
+Z/Zz = oo

Qlw.,

0-8 1 I I ¥ 1
0.00 0.01 0.02 0.03 0.04 0.05

Figure 8.3.2. Resonant frequency versus the rotation rate Q.

w versus Z for the case of a capacitive output circuit is plotted in
Figure 8.3.3 for fixed & @, = 0, 0.025, and 0.05. The figure shows that
the resonant frequencies vary according to the load. Together with the
dependence of frequency on the rotation rate shown in Figure 8.3.2,
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the load dependence of frequency further complicates the design of these
gyroscopes because the resonant frequencies have to be predicted and
controlled accurately for the gyroscope to operate in resonant conditions
with high sensitivity.

1.1 4
<
)
1.0 - 2
il -~ . -—e
k_._’o——.’—'f
L
. —— Qw,=0
0.9 — QVw,=0.025
—— Q/w,=0.05
Z/Z,
0-8 1 1 1 L}
0.0 0.1 0.2 0.3 0.4

Figure 8.3.3. Resonant frequency versus the load Z.

8.3.3 Forced vibration

For forced vibration analysis, we want to take into consideration
some effect of damping. We use c;, =c,,(1+iQ") for the shear elastic

constant, where ¢4 and Q (the quality factor) are real and the value of Q
for ceramics is usually on the order of 10 to 10°. In the following, we fix
the value of Q as 10% in our calculations. From Equation (8.3.12), we
obtain the forced vibration solution for the output voltage sensitivity as

_ .
Vo | g yp b _200(@)” (8.3.17)
4 a(l+ 2,/ Z)A(w)
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where

2 )

s (ol)? :ﬂx_. (8.3.18)
8 )

€11Ca pe

(kys)? =

Voltage sensitivity as a function of the driving frequency is plotted in
Figure 8.3.4 for a fixed Q and two values of Z. It is seen that near the two
resonant frequencies the sensitivity assumes maxima. The distance
between the two resonant frequencies depends on Z, as also suggested by
Figure 8.3.3. Numerical tests also show that if smaller values of Q are
used in the calculation, the peaks become narrower and higher.
Theoretically, higher peaks imply higher sensitivity. However, in reality,
narrower peaks require better control in tuning the device into resonant
conditions.

4.0+ V1V

Q=0.0lw,
3.5 4

s0d ZzZ=1 Z/Z, = 100

2.5 - \ \
2.0 1
1.5

1.0 4

0.5 "' CU/Cl)oo

0-0 T ¥ L) L) 1
0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 8.3.4. Sensitivity versus the driving frequency w.

The dependence of the voltage sensitivity on the rotation rate Q is
shown in Figure 8.3.5 for a fixed driving frequency near resonance and
for different values of the load Z. When Q is much smaller than ay,
which is true in most applications of piezoelectric gyroscopes, the
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relation between the sensitivity and Q is essentially linear. Therefore, in
the analysis of piezoelectric gyroscopes, very often the centrifugal force
which represents higher order effects of Q is neglected and the
contribution to sensitivity is totally from the Coriolis force which is
linear in Q.

4.0 4 |V2/V1| 0 = Wy

3.0
Z/1Z,=1

2.0 -
1.0 \
Z!Z,=0.1
Q /g
0.0 T T |
0.000 0.005 0.010 0.015

Figure 8.3.5. Sensitivity versus the rotation rate £2.

The variation of sensitivity according to the load Z is also of interest
in practice and is given in Figure 8.3.6 for a fixed driving frequency near
resonance and for different values of Q. For small loads the sensing
electrodes are almost shorted and the voltage sensitivity is small although
the output current may be large. As the load increases, the sensitivity
increases and exhibits an almost linear range. When the load is large
enough the output electrodes are essentially open with the output voltage
saturated and a very small output current.

Finally, we note that in the case of open output electrodes (Z = oo)
and without material damping, if the effects of piezoelectric coupling
and rotation on resonant frequencies are neglected, Equation (8.3.17)
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reduces to

v, , b 2Qee: _ . b Qo

il SR o S A 8.3.19
a(a)z—a)2 2 1 2a(a)—a)w)2 ( )

which shows the most basic behavior of the gyroscope (compare to
Equation (2.4.136)).

Figures 8.3.4 through 8.3.6 are qualitatively similar to those of the
mass-rod gyroscope in [9].

2.5 1

2.0 -

151 Ve, = 0.01

N

05 - Qw, = 0.005

1.0

z/Z,
0.0 1 L] ] T 1

0.0 0.1 0.2 03 04 0.5

Figure 8.3.6. Sensitivity versus the load Z.

8.4 A Transformer — Forced Vibration Analysis

A free vibration analysis of a thickness-shear piezoelectric
transformer was performed in the third section of the sixth chapter using
one-dimensional equations. Frequency equation and modes were
obtained, showing the mechanism of the transformer. For a complete
analysis of a piezoelectric transformer, a forced vibration analysis is
necessary. Although the thickness-shear transformer analyzed in the third
section of the sixth chapter is a thin rod (see Figure 8.4.1), its operating
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modes shown in Figure 6.3.6 or Figure 6.3.7 are slowly varying in the
driving and receiving portions when the transformer is long, and
therefore can be approximated by the zero-dimensional equations. In this
section we perform a forced vibration analysis of the transformer using
zero-dimensional equations.

¢=Vl(t) X3 Pe X3

1) I LK T
_ 2 X, X, 2w i
%Z/}\ A N B 74

! | x|

| 2 —» P rt 2h &

| - —Yor0)
-0~ 21 H 21
z

L(?)

Figure 8.4.1. A thickness-shear piezoelectric transformer.

8.4.1 Governing equations

The driving portion is determined by -/ < x; < 0. The receiving
portion is 0 < x; < /. V; is the input voltage and V; is the output voltage.
For each portion of the transformer there exists a local Cartesian
coordinate system x; with its origin at the center of the portion and
directions along the global system X;. The thickness-shear motion we are
considering can be approximately represented by

u = x,u™, u, =0, u;=0. 8.4.1)

In the driving portion the electric potential is the known driving
potential with

¢_:_ ¢(0,0,0) +x3¢(0,0,1)’

(0,0,0) _ (0,0,) _ = (8.4.2)
¢ =V 12, ¢ =V I(2h).
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From Equation (8.2.4),, setting j = 1, we obtain the equation of motion
as

=773
_T000 |, GO0 _ p8lv;h T (8.4.3)
where
W ph
FOO _ -[W LH T, (X, =07)X,dX,dX,. (8.4.4)

Relevant constitutive relations are taken from Equation (8.2.5)
0,0,0 =7 2 +(0,0,0 0,0,0
IO = 8Iwh(cyy xS0 —ey5kESD),
D0 = 81w h (e kS + £, ESY).

In Equation (8.4.5) we have introduced a thickness-shear correction

(8.4.5)

factor k. For a ceramic parallelepiped we can use x* =7°/12 as an

approximation. For the charge and current on the electrode at X; = h,
we have

Q, =-D{*™ ((2h), I, =-0,. (8.4.6)
In the receiving portion, the electric potential can be written as
¢ = OV 4 x 5100

84D
g0 =y, 72, ¢ =V, K21),
where V; is unknown. The equation of motion is
3
- ]"3(10’0"’) + F](O’OJ) = p___81w3/h ii,(°’°>1), (8.4.8)
where
(0,0,1) W 2 +
RO = [ [ —1,(X, = 07)X,dX,dx;. (8.4.9)
Relevant constitutive relations are
700 = 8iwh(c,, k2SO0 — e 1 OO0 ,
31 ( 44 5 15 1 ) (8410)

D = 8lwh(e, s, 80 + £, EL0).

The electric charge on the electrode at X; = 2/ and the electric current
flows out of the electrode are given by

Q, =-D*Y j2n, I, =-0,. (8.4.11)
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In deriving the above we have assumed that there is no body force and
made use of the traction-free boundary conditions at X, = 2/, X, = 1w,
and X; = th.

Substituting Equation (8.4.10), into Equation (8.4.8), and Equation
(8.4.5), into Equation (8.4.3), adding the resulting equations and making
use of the continuity conditions

EPP (X, =07 =-F*P (X, =07,

(8.4.12)
u (X, =07)=u (X, =0"),
we obtain
= 8Iwh(cyy ki’ SOV — ey kB
—8IWh(cyy k28O0 — ) kB0 (8.4.13)

= % p(wh® + Iwh* )i,

Under the known time-harmonic driving voltage ¥, =V, exp(iat) , for
time-harmonic solutions we employ the complex notation and write the
unknowns as

ul(o,o,1_) =uexp(ion), Vi =V, exp(iat), (84.14)
I, =1, exp(iat), I,=1,exp(iox).

The receiving electrodes are connected by an output circuit which, when
the motion is time-harmonic, has an impedance Z;. We have the
following circuit condition

I,=V,1Z,. (8.4.15)

With successive substitutions, we obtain the following two equations for
# and V,, driven by 7,

- 7Z
—8lwh(c, k1 + e,slc%) —8IWh(cy, k1 + elSKﬁ)

= —g p(wh® + Iwh*)oH, (8.4.16)
. S A 2
Awhio(e sk — &, 2—21) = Z—ZL-
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Once # and ¥, are obtained, the currents are given by

2 (8.4.17)

- = 14
I, = Alwioe, ki — £,, —=).
1 a(eys 1 2h)
8.4.2 Forced vibration analysis

We consider the case of / =/ and w =% . Solving Equations (8.4.16)
for i and V,, we obtain the transforming ratio and normalized input and
output currents as

74 2
K2_ k15 _l_
Vi (+hIB)(+Zy/Z, Y @? 0} -1)-kihik h’
1_2 _ k125 L
N12Z,) +hIB)A+Z,/Z,)w* |0 -1)—kEhZ, (hZ,) k'
I Ki(+2,/2,)
V,12,) A+h/hY1+ 2,/ Z, X0* | 0} ~1)—kih/H®
(8.4.18)
where
K= els o= 231c2c_,_44 __,
€11Ca p(h”—hh +h")
z,-——, ¢ -fu¥¥ (8.4.19)
iaC, 2h
z,= 1 C =gll4wh.

ioC,” ' 2l
In Equation (8.4.19), w,, is the thickness-shear resonant frequency for

shorted receiving electrodes (Z, = 0) as predicted by the zero-
dimensional theory, C; and C, are the static capacitance of the driving
and receiving portions, and Z; and Z, are the impedance of the two
portions. As a numerical example, we consider PZT-5H. Material
damping is included by allowing c,, to assume complex values. cyy is
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replaced by ¢, (1+ iQ'l) , Where ¢4 and Q are real and the value of Q is
fixed to be 10? in the calculation.
The transforming ratio |V, /V;| as a function of the driving

frequency @ is shown in Figure 8.4.2. When o is close to the resonant
frequency w,, , the transforming ratio assumes maximum.

300 1

|V V1|
200
Z1=2000 kQ2
100 -
0 ] L) T
300 400 500 600
Frequency (kHz)

Figure 8.4.2. Transforming ratio versus driving frequency.

|V, /V;| versus the aspect ratio / /h (the length of the receiving
portion over the thickness of the driving portion) is plotted in
Figure 8.4.3. An essentially linearly increasing behavior is observed.
Figure 8.4.3 exhibits the voltage raising ability of the transformer. For
large aspect ratios or long and thin transformers, high voltage output can
be achieved. The zero-dimensional equations are particularly suitable for
long and thin transformers with almost uniform fields. The dependence
of the transforming ration on //h can also be seen from the factor of
I/h in Equation (8.4.18),.

It can be concluded from Equation (8.4.18); that for small Z; or
almost shorted receiving electrodes, |V, /V; | as a function of Z; is linear
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807 v
60 1 f=521.5 kHz
Z1,=2000 kO
40
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0 T L) L]
0 10 20 30

l/h

Figure 8.4.3. Transforming ratio versus aspect ratio.

in Z;. For very large Z; or almost open receiving electrodes, the
transforming ratio approaches a constant (saturation). We note from

Equation (8.4.18), that the output current I, has such a dependence on
Z; that when Z is small I_2 has a finite value and when Z; is large 1-2
approaches zero. This is as expected. |V, /V;| as a function of Z, is
shown in Figure 8.4.4.

The input and output powers of the transformer, in terms of the
complex notation, are given by

P LT+ TV, =077 + 175, (8.4.20)
Then the efficiency of the transformer is

n=P/P. (8.4.21)
It can be concluded from Equations (8.4.18), (8.4.20) and (8.4.21) that
the efficiency as a function of Z behaves as follows. For small loads, n
depends on the load linearly. For large loads, 1 decreases to zero. The

efficiency as a function of Z; is shown in Figure 8.4.5.
The behaviors shown in Figures 8.4.2 through 8.4.5 for the

thickness-shear transformer are qualitatively very similar to the
behaviors of the Rosen extensional transformer discussed in [9].
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Figure 8.4.4. Transforming ratio versus load.
127
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Figure 8.4.5. Efficiency versus load.
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Appendix 1
Notation

61]' ) 5KL
6iK > 6K i

Eijks Elx
Xk

Yi

e & NSO

I

Kronecker delta

Shifter

Permutation tensor

Reference position of a material point

Present position of a material point

Mechanical displacement vector

Jacobian

Deformation tensor

Finite strain tensor

Linear strain tensor

Velocity vector

Deformation rate tensor

Spin tensor

Material time derivative

Reference mass density (scalar)

Present mass density

Free charge density per unit present volume (scalar)
Free charge density per unit reference volume
(scalar)

Surface free charge per unit present area (scalar)
Surface free charge per unit reference area (scalar)
Free charge (scalar)

Current

Voltage

Impedance

Permittivity of free space

Electrostatic potential

Electric field

Electric polarization per unit present volume
Electric polarization per unit mass
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Electric displacement vector
Reference electric field vector

Reference electric polarization vector
Reference electric displacement vector

Mechanical body force per unit mass
Cauchy stress tensor

Electrostatic stress tensor

Symmetric stress tensor in spatial, two-point, and
material form

Symmetric Maxwell stress tensor in spatial, two-
point, and material form

Total stress tensor in spatial, two-point, and material
form

K16 m

Linear stress tensor

Mechanical surface traction per unit reference area
Mechanical surface traction per unit present area

Free energy per unit mass
Electric enthalpy per unit volume

Plate material constants obtained by relaxing 7, .

Plate material constants obtained by relaxing 75, .

Cpq>Cip
Beam material constants obtained by relaxing
T, -T,.

Beam material constants obtained by relaxing
T, -T,.

C,p>€4, modified by shear correction factors.

modified by shear correction factors.

Thickness-shear frequency of an unbounded plate.
Thickness-shear correction factor.
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Appendix 2
Electroelastic Material Constants

Material constants for a few common piezoelectrics are summarized
below. Numerical results given in this book are calculated from these
constants.

Permittivity of free space &£, =8.854x10™?F/m.

Polarized ceramics
The material matrices for PZT-5H are [74]
p="17500 kg/n?’,

126 795 841 0 0

795 126 841 0 O

841 841 11.7 0 0
0 0 0 23 0
0 0 0 0 23
0 0 0 0 0 2325

x 10" N/m?,

0
0
B 0
[cpql = 0
0

0 0 0 0 17 0
[e,]=| 0 0 0 17 0 0|C/m?,
-65 -65 233 0 0 0

298
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1700¢, 0 0
[e;1=] O 1700¢, 0
0 0 1470¢,

1.505 0 0
=l 0 1505 0 [x10°C/(V-m).
0 0 1302

For PZT-5H, an equivalent set of material constants are [74]
s =165, §33, =207, s, =435,
s;, =—4.78, 5,3 =-8.45x10™"*m*/N,
dy =274, dis =741, dy; =593x107"2C/N,
&, =3130¢,, &5 =3400¢,.
When poling is along other directions, the material matrices can be

obtained by tensor transformations. For PZT-5H, when poling is along
the x; axis, we have

11.7 8.41 841 0 0
841 126 795 0 0
841 795 126 0 0
0 0 0 2325 0
0 0 0 0 23
0 0 0 0 0 23

[cpgl = x 10" N/m?,

233 -65 -65 0 0 0
e, J=| 0 0 0 0 0 17(C/m?,
0 0 0 017 0

1302 0 0
[gl=| 0 1505 0 [x107°C/Vm.
0 0 1.505
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When poling is along the x, axis

126 841 795 0
841 11.7 841
795 8.41 12.6
0 0 0 23 0
0 0 0 0 2325
0 0 0 0 0 23

o o O

[cpgl = x10'°°N/m?,

0 0 0 0 017
[e,]=|-6.5 233 -65 0 0 0 |C/m?,
0 0 0 17 0 0

1.505 0 0
=] 0 1302 0 |[x107°C/Vm.
0 0 1.505

For PZT-G1195

p=7500kg/m>, cf=ci =148, ci =131, c5 =762,
cE=ck =742, cb =ck =254, ck =359GPa,
es =92, e;=-2.1 e;=9.5C/m?.

Material constants of a few other polarized ceramics are given in the
following tables [75]:

Material | <u C12 C13 C33 Ca4 Ce6
PZT-4 139 | 7.78 | 740 | 11.5 | 2.56 | 3.06
PZT-5A | 12.1 | 7.59 | 7.54 | 11.1 | 2.11 | 2.26
PZT-6B | 16.8 | 847 | 842 | 163 | 3.55 | 4.17
PZT-5H | 12.6 | 791 | 839 | 11.7 | 230 | 2.35
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Material cu Ci3 €33 Cy4 Co6
PZT-7A | 148 | 7.61 | 8.13 | 13.1 | 2.53 | 3.60
PZT-8 | 137 | 699 | 7.11 | 123 | 3.13 | 3.36
BaTiO; | 15.0 | 6.53 | 6.62 | 14.6 | 439 | 4.24
x 10" N/m?
Material €31 €33 e1s & &3
PZT-4 | -52 | 151 | 12.7 | 0.646 | 0.562
PZT-5A | -54 | 15.8 | 12.3 0.811 | 0.735
PZT-6B | -09 | 7.1 | 4.6 |0.360 0342
PZT-5H | -6.5 | 233 | 17.0 | 1.505 | 1.302
PZT-7A | -2.1 | 95 | 9.2 |0.407 | 0.208
PZT-8 | -40 | 132 | 104 |0.797 | 0.514
BaTiO; | -43 | 17.5 | 11.4 | 0.987 | 1.116
C/m* x10® C/Vm
Density | PZT-5H | PZT-5A | PZT-6B | PZT-4
kg/m’ 7500 7750 7550 7500
Density | PZT-7A | PZT-8 | BaTiOs
kg/m’ 7600 7600 5700
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Quartz

When referred to the crystal axes, the second-order material
constants for left-hand quartz have the following values [76]:

p = 2649 kg/m’,
86.74 699 1191 -1791 0 0
699 86.74 1191 1791 0 0
11.91 1191 1072 0 0 0 )
[e,g]= %109 N/m? ,
-17.91 1791 0 5794 0 0
0 0 0 0 57.94 -17.91
0 0 0 0 -1791 39.88
0.171 -0.171 0 -0.0406 0 0
[e,]=| O 0 0 0 0.0406 —0.171|C/m?,
0 0 0 0 0 0

3921 0 0
1= 0 3921 0 [x10™C/Vm.
0 0  41.03

Temperature derivatives of the elastic constants of quartz at 25 °C are
(771

rq 11 33 12 13
(1epg)(depg/dT) i i )
(10°°C) 18.16 66.60 1222 178.6
rq 44 66 14

(Vepdep/dT) | )
(10/°C) 89.72 126.7 49.21
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For quartz there are 31 nonzero third-order elastic constants. 14 are
given in the following table. These values, at 25 °C, and based on a least-
squares fit, are all in 10" N/m? [78]

Constant Value Standard

error
cim -2.10 0.07
Ci2 -3.45 0.06
ci3 +0.12 0.06
Cli4 -1.63 0.05
C123 -2.94 0.05
C1z -0.15 0.04
C133 -3.12 0.07
Ci34 +0.02 0.04
Cla4 -1.34 0.07
Cis5 -2.00 0.08
o -3.32 0.08
€333 -8.15 0.18
2 -1.10 0.07
Caas -2.76 0.17

In addition, there are 17 relations among the third-order elastic constants
of quartz [79]

i
G2 =G TG — 6y Cise =5(0114 +3¢134)s
1
Cie6 "Z(_zcm =Gy +360),

1
Cooa =—Ciig —2C1045  Crs6 = 5(0114 ~Cq )
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1
€266 =Z(2Cm €12~ Cm)s

1 1
C366 —5(0113 —C3)s  Cyss =5(_cl44 +Cy55),
€3 = Chi3s €33 =33 €3¢ = Ci34»  Coag =Ciss>  Ca55 = Claas

C355 =C344> C3s6 —Cl34>  Cass = ~Caaar  Cye = Cro4-

For the fourth-order elastic constants there are 69 nonzero ones of
which 23 are independent [49]

Cinis  C3333> Cadaas Cees6>  Citiz> Cr113s €z C€22145  C3331s
Casse> Css24> Casazs Crizz» C3344> Cuses Criss> Crizes  Casseos

Cas23s Caa13» €3314> Cos14> Co624

There are 46 relations [49]

€02 TCiis Cnes =g(cllll —Chiz)s 223 =Ciiso

1

€1 =€z Ces12 =€(C““ —4cee66 —Cr112)» €213 =Ci1a3s

1
Crie6 =C266> Cnn :'3_(_01111 +4cyp1p +8Ce666 )5

1
Ce613 *2(01113 —Cizs)s

Cssss = Caaaa>  Caass =§c4444s Ce623 = Ce613>

Ciiza = —Co14 +Co614 T Co624

Cy312 = —Crzss Criia =3(—Coppa +2Ce614 —2Ce604)s  C233 = Crizzs
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1
Crse = 5(—202214 +3Ce614 = S5Cs624)s  Co633 =Cr133>
Cama =3(Co14 —3Ce614 + Co624 )

—— 1 ——
C3355 = C33445 Cl156 —5("202214 +7Ce614 —Co624)>  C3332 =C33315
— 1 —
Ci256 —E(_zczm +3Ce614 —Cog24)>  Css3a = ~Caasa>

Ce665 = 5(06614 ~ Cog4 s

Caaar =—4Cuus6 —Csspas  Cioza =Criza — 2Cns65  Capss =Caanzs
Css1a = 2Caas6 + Cssoa>  Ciase = 2C1134 — 3Coas6s  Csses = Clases

Cssse =3Canses Coa =4Cos6 —3C1134>  Cazpa =—Ci3145

Caam =2Cus6 —Cssa>  Cosa =Ciasa>  C33s6 =C331as  Css12 =Caanzs

Ci144 =Cua125 Cs523 TCa413> Coase —Cuase> €244 =Crisss  Css13 = Cqanzs
_ _ 1
Caae6 =Ciasss Caarz =Criss —4Ciuses  Cass —5(04423 = C4a13)-

The fourth-order elastic constants are usually unknown. Some scattered
results are [49]

¢y =1.59x10° N/m? +20%,
C3333 =1.84x 10 N/m? + 20%,

and [8]
cEe =77x10"N/m?.

AT-cut quartz is a special case of rotated Y-cut quartz (8 = 35.25°)
whose material constants are [4]

86.74 -8.25 27.15 -3.66 0 0
-8.25 12977 -742 5.7 0 0
27.15 -7.42 10283 992 0 0 9 2
{cpg= x 10" N/m*,
-3.66 5.7 992 38.61 0 0
0 0 0 0 68.81 2.53
0 0 0 0 2.53 29.01
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0.171 -0.152 -0.0187 0.067 0 0
[e,1=| O 0 0 0 0.108 —0.095 [C/m?,
0 0 0 0 —-0.0761 0.067

3921 0 0
[]1=| 0 39.82 086 [x107*C/Vm.
0 086 4042

Langasite

The second-order material constants of La;GasSiOy, are [80]

p = 5743 kg/m’,
18.875 10.475 9.589 -1.412 0 0
10.475 18.875 9.589 1.412 0 0
9.589 9.589 26.14 0 0 0
[cpq]=
~1.412 1412 0 5.35 0 0
0 0 0 0 535 —1.412
0 0 0 0 -1412 42

x10"N/m?,

-044 044 0 -008 0 0
[e,]=| © 0 0 0 008 044|C/m?,

0 0o o0 0 0 0

18926, 0 0
[g]=] O 1892, O
0 0 50.7¢,

1675 0 0
=l 0 1675 0 |x107*C/Vm.

0 0 4489
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The third-order material constants of La;GasSiOy4 at 20°C are given

in [80]. The third-order elastic constants ¢, (in 10 N/m?) are

Ci -97.2 Ci34 -4.1
Ci12 0.7 Cla4 -4.0
3 -11.6 Ciss -19.8
Ci14 2.2 Con -96.5
1 09 C3n3 -1834
C12a 2.8 Caaa -38.9
C133 =721 Caa4 20.2

The third-order piezoelectric effect constants e, (in C/m?) are

e 93 €1 -4.8
€113 -3.5 €134 6.9
el 1.0 2m -1.7
e 0.7 €315 -4

The third-order electrostriction constants H, (in 10°N/V?) are

Hy, -26 Hj, -24
Hyp, 65 Hs; -40
His 20 Hy, -170
Hy, -43 Hyy -44

The third-order dielectric permeability &; (in 10° F/v ) are

&n

-0.5
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Lithium Niobate

The second-order material constants for lithium niobate are [81]
P =4700 kg/m’,

203 053 075 0.09
0.53 2.03 075 -0.09
075 075 245 0 . R
[Cpql = x 10" N/m?,

0.09 -0.09 0 060 0 0
0 0 0 0 060 0.09

0 0 0 0 0.09 0.75

o o O

0
0
0

0 0 0 0 370 -2.50
[e,]=|-250 250 0 370 0 0 |C/m?,
020 020 130 0 0 0

389 0 0
[1=| 0 389 0 |x10™'C/Vm.
0 0 257

The third-order material constants of lithium niobate are given in
[82]. The third-order elastic constants ¢, (in 10" N/m?) are

Constant Value Standard
error
cu 21.2 4.0
Cli2 -5.3 1.2
Ci13 -5.7 1.5
Cli4 2.0 0.8
€123 2.5 1.0
C1n 04 0.3
133 -7.8 1.9
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Constant Value Standard

error
Cias 1.5 0.3
Cla4 -3.0 0.2
C1ss -6.7 03
ca -23.3 34
€333 -29.6 7.2
C344 -6.8 0.7
Caa4 -0.3 0.4

The third-order piezoelectric constants e,,, (= — llcipq ) are
Constant Value Standard

error
ens 17.1 6.6
0 -4.7 6.4
e12s 19.9 2.1
€126 -15.9 53
e1ss 19.6 2.7
€136 -0.9 2.7
ess 20.3 5.7
e 14.7 6.0
e 13.0 114
es3 -10.0 8.7
€314 11.0 4.6
€133 -17.3 5.9
€344 -10.2 5.6

C/m?
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The third-order electrostirctive constants /,, (compressed from b, +

Appendix 2

£08,;0y ~€0046, -£06,0,) (in 10°F/m’) are

Constant Value Standard

error
I 1.11 0.39
I 2.19 0.56
Is 2.32 0.67
I3 0.19 0.61
b -2.76 0.41
N 1.51 0.17
Isy 1.85 0.17
lsa -1.83 0.11

The third-order dielectric constants &, (in 10 F/V) are

Constant Value Standard
error
& -2.81 0.06
& -2.40 0.09
&3 -2.91 0.06

Lithium Tantalate

The second-order material constants for lithium tantalate are [81]

p = 7450 kg/m’,
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233 047 080 —-0.11 0 0
047 233 080 011 0 0
ool = 080 0.80 245 0 0 N .
~0.11 -011 0 094 0 0
0 0 0 0 094 -0.1
0 0 0 0 —011 09

0 0 0 0 26 -16
[e,]=|-16 16 0 26 0 0 |C/m?,
0 019 0 0 0

363 0 0
[]1=| 0 363 0 [x107'C/Vm.
0 0 382

Cadmium Sulfide (CdS)

The second-order material constants [74]:
p =4820 kg/m>,
¢, =9.07, ¢33 =938, ¢, =1.504,
¢, =581, ¢;3=5.10x10""N/m?,
e;s =—0.21, ey =—024, e, =—0.44C/m?,
&, =9.02¢8,, &3 =9.53¢,, &, =8.854x107"*F/m,
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Index

actuator 122, 133, 150, 207

antiresonance 58

apparent material constant 16

beam 225

Bessel function 56, 221

bias 12, 168

bimorph 172, 249

Bleustein-Gulyaev wave 33, 167

boundary element 157, 206

boundary integral equation 206

buckling 172

cadmium sulfide 86, 311

capacitance 28, 104, 278, 287

Cauchy 34

ceramic 32, 49, 72, 78, 82, 91, 172, 201,
231, 234, 249, 268, 298

charge 10, 57

charge equation 3

circuit condition 10, 94, 255, 277, 286

classical flexure 66, 130, 133, 196, 242,
266

Coriolis 93, 275

correction factor 37, 61, 78, 96, 183,
239

cubic 19, 179

current 10, 57

cutoff frequency 33

cylindrical coordinates 203, 218, 262

damping coefficient 186

degeneracy 116

Dirac delta function 153

dispersion relation 33, 48, 66, 115, 117,
118, 121, 132, 166, 222, 224

double resonance 95

effective material constant 16

efficiency 289

eigenvalue problem 104, 235, 255

electromechanical coupling factor 175,
278

energy trapping 88, 120

312

enthalpy 8

extension 33, 47, 228

face-shear 33, 47

finite difference 159

finite element 142

first-order theory 58, 127, 147, 168,
180, 189, 235, 262

flexure
classical (see classical flexure)
shear deformation 64, 132

forced vibration 27, 185, 280, 283

four-vector 213

free energy 3, 7, 18, 20

free vibration 25, 82, 104, 185, 201,
235, 252, 268, 277

frequency split 279

Gauss’s equation 3

gyroscope 91, 274

half-space 150

harmonic 235

initial fields (see bias)

initial stress theory 18, 172

integral-differential equation 152, 206

isotropic 64, 68, 70, 112, 135

Kane-Mindlin theory 111

Kirchhoff 34, 36

Kronecker delta 1, 2

Lame¢ coefficient 190

Lamé¢ constant 64, 112

laminate 145

langasite 22, 306

lithium niobate 308

lithium tantalate 310

Love wave 167

matrix notation 11

membrane theory 199, 204, 211

Mindlin-Medick theory 111

monoclinic crystal 23, 98

motional capacitance 104

nonlinear 1, 19, 168
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non-slip condition 222 substrate 150
orthogonality 107 surface wave 162
overtone 235 thickness-shear
parallelepiped 270 approximation 69, 74, 244
permittivity 3, 298 correction factor 78, 96, 183, 239
perturbation 214 nonlinear 179
piezoelectric stiffening 86, 279 - static deformation 27
plate 22 vibration 22, 184
Poisson 34 wave 33
Poisson’s effect 41, 58, 236 thickness-stretch
Poisson’s ratio 65, 142 approximation 117
polar coordinates 55, 140, 217 deformation 111
positive-definite 8 wave 33
potential 3 thickness-twist 33
quality factor 186, 280, 288 torsion 220
quartz 22, 96, 102, 184, 302 transformer 252, 283
Rayleigh transverse isotropy 32
quotient 107, 220 unimorph 133
wave 33 variation 5, 11, 16, 107
relaxed material constants for plates 45, vibration
46, 182 beam 234
resonance 26, 57 circular disk 54
resonator 102 cylindrical shell 202
ring 217, 262 ring 268
Rosen transformer 289 spherical shell 201
saturation 282, 289 viscosity 221
second-order theory 107 wave
self-adjoint 107 extension 33, 47
sensor face-shear 33, 47
angular rate 91, 274 flexure 33, 64
fluid 220 high-frequency 33
mass 210 low-frequency 33
shell 189 straight-crested 29, 113
shifter 2 surface 33, 162
spherical coordinates 201 thickness-shear 33, 64, 132
strain thickness-stretch 33, 115, 117, 118
finite 4 thickness-twist 33
infinitesimal 9 torsional 220
stress concentration 154 width-shear 235
stress function 138 zero-order theory 41, 228, 273

stress relaxation 44, 46, 62, 96, 110,
170, 182, 229, 237, 246
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