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Preface 

This book is a natural continuation of the author's previous book, 
"v4w Introduction to the Theory of Piezoelectricity" (Springer, New 
York, 2005), which discusses the three-dimensional theory of 
piezoelectricity. Three-dimensional theory presents complicated 
mathematical problems due to the anisotropy of piezoelectric crystals 
and electromechanical coupling. Very few problems in piezoelectric 
devices can be directly analyzed by the three-dimensional theory. To 
obtain results useful for device applications, usually numerical methods 
have to be used or structural theories have to be developed to simplify 
the problems so that theoretical analyses are possible. These two 
approaches are both very effective in the modeling and design of 
piezoelectric devices. 

For piezoelectric devices, dynamic problems are frequently 
encountered. This is because many piezoelectric devices are resonant 
devices operating at a particular resonant frequency and mode of a 
structure. Both surface acoustic waves (SAW) and bulk acoustic waves 
(BAW) are used. In the analysis of resonant piezoelectric devices, 
usually vibration characteristics like frequency and wave speed are of 
primary interest, not the stress and strain for strength and failure 
consideration as in traditional structural engineering. 

Another rather unique feature of the analysis of resonant 
piezoelectric devices is that BAW devices often operate with the so-
called high-frequency modes. Take a plate as an example. The high 
frequency modes, e.g., thickness-shear and thickness-stretch, are modes 
whose frequencies are determined by the plate thickness, the smallest 
dimension. This is in contrast to the low frequency modes of extension 
and flexure in traditional structural engineering, whose frequencies 
depend strongly on the length and/or width of the plate. Another 
characteristic of the high frequency modes is that for long waves their 
frequencies do not go to zero but have finite cutoff frequencies. This has 
implications in certain unique behaviors of the high frequency modes 
such as the useful energy trapping phenomenon. 
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vi Mechanics of Piezoelectric Structures 

In applications to high-frequency, dynamic problems of piezoelectric 
devices, the accuracy of a structural theory is judged by its dispersion 
relation of the wave solution of the operating mode of a device in the 
frequency range and wave number range of interest. This is different 
from traditional structural engineering where, for example, the stress 
distribution over the cross section of a beam or plate is often of main 
interest. 

The study of high frequency modes in piezoelectric plates by 
structural theories was initiated by R. D. Mindlin. Mindlin's effort in the 
shear deformation plate theory was mainly for the analysis of thickness-
shear vibrations of crystal plates, a problem motivated by the study of 
piezoelectric resonators. Under the influence of the pioneering work of 
Cauchy, Poisson and Kirchhoff, Mindlin systematically derived 
equations for high-frequency vibrations of piezoelectric plates based on 
expansions and approximations in the variational formulation of the 
three-dimensional theory, and studied behaviors of the high-frequency 
modes using plate equations. A systematic treatment of high frequency 
vibrations of crystal plates was given by Mindlin in "An Introduction to 
the Mathematical Theory of Vibrations of Plates" (the U.S. Army Signal 
Corps Engineering Laboratories, Fort Monmouth, NJ, 1955), which was 
not formally published. 

This book focuses on high-frequency, dynamic theories of 
piezoelectric structures for device applications. It emphasizes the 
development of theories and the determination of the frequency ranges 
and wave number ranges in which the theories are good approximations 
of the three-dimensional theory. Following a brief summary of the three-
dimensional theories of electroelastic bodies in Chapter 1, the 
development of two-, one- and zero-dimensional theories for high-
frequency vibrations of piezoelectric plates, shells, beams, rings and 
parallelepipeds is systematically presented in subsequent chapters. The 
range of applicability of the structural theories obtained is examined by 
comparing dispersion relations of simple wave solutions from the 
structural theories to the dispersion relations of the exact solutions of the 
same waves from the three-dimensional theories. In addition to linear 
piezoelectricity, certain nonlinear effects are also considered. As 
examples of applications, simple vibrations of piezoelectric plates, shells, 
beams and rings are analyzed. A few piezoelectric devices including 
resonators, actuators, a mass sensor, a fluid sensor, a transformer, a 
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Preface vn 

gyroscope and buckling of thin structures are also studied using 
structural theories. 

The main purpose of the book is to present a procedure systemized 
by Mindlin for developing structural theories, rather than collecting all 
theories for piezoelectric structures. It is hoped that, having read a book 
like this, one can develop various structural theories needed when facing 
different device problems. 

Due to the use of quite a few stress tensors and electric fields in 
nonlinear electroelasticity, a list of notation is provided in Appendix 1. 
Material constants of some common piezoelectric materials are given in 
Appendix 2. 

I would like to take this opportunity to thank Ms. Deborah Derrick of 
the College of Engineering and Technology at UNL for editing 
assistance with the book, and Mr. Honggang Zhou, my graduate student, 
for plotting Figures 2.5.2 and 2.5.3. 

JSY 
Lincoln, NE 
September, 2005 
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Chapter 1 
Three-Dimensional Theories 

In this chapter we summarize the three-dimensional equations of the 
nonlinear theory of electroelasticty for large deformations and strong 
fields [1,2], the linear theory of piezoelectricity for infinitesimal 
deformation and fields [3,4], the linear theory for small fields superposed 
on finite biasing or initial fields [5,6], and the theory for weak, cubic 
nonlinearity [7,8]. A systematic presentation of these theories can also be 
found in [9]. The structural theories of lower dimensions in later chapters 
will be derived from these three-dimensional theories. This chapter uses 
the two-point Cartesian tensor notation, the summation convention for 
repeated tensor indices, and the convention that a comma followed by an 
index denotes partial differentiation with respect to the coordinate 
associated with the index. 

1.1 Nonlinear Electroelasticity for Strong Fields 

Consider a deformable continuum which, in the reference 
configuration at time to, occupies a region V with a boundary surface S 
(see Figure 1.1.1). N is the unit exterior normal of S. In this state the 
body is free from deformation and fields. The position of a material point 
in this state is denoted by a position vector X = XKlK in a rectangular 
coordinate system XK- XK denotes the reference or material coordinates of 
the material point. They are a continuous labeling of material particles so 
that they are identifiable. At time t, the body occupies a region v with a 
boundary surface s and an exterior normal n. The current position of the 
material point associated with X is given by y = y$k, which denotes the 
present or spatial coordinates of the material point. 

Since the coordinate systems are othogonal, 

**•»/=<*«» 1K'IL=8KL> (1-1-1) 

where <5jw and 8KL are the Kronecker delta. In matrix notation, 

l 
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2 Mechanics of Piezoelectric Structures 

[8kl} = [8KL} = 

"1 0 0" 

0 1 0 

0 0 1 
(1.1.2) 

to: 

Reference 

Present 

Figure 1.1.1. Motion of a continuum and coordinate systems. 

In the rest of this book the two coordinate systems are chosen to be 
coincident, i.e., 

o = 0, ii = I,, i2 = h, i3 = I3. (1.1.3) 
The transformation coefficients (shifters) between the two coordinate 
systems are denoted by 

h-h=*kL- (1-1-4) 

When the two coordinate systems are coincident, SUL is simply the 
Kronecker delta. It is still needed for notational homogeneity. A vector 
can be resolved into rectangular components in different coordinate 
systems. For example, we can also write 

y=yKh, (1.1.5) 
with 

yu=sulyi- (i-1-6) 
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Three-Dimensional Theories 3 

The motion of the body is described by yt =yi(JL,t) . The equations 
of motion and Gauss's equation of electrostatic (the charge equation) are 

KLj,L+Pofj =Po'yj: 
(1.1.7) 

where KLj is the two-point total stress tensor, fo is the reference mass 

density, fi is the mechanical body force per unit mass, and <D K is the 

reference electric displacement vector. pE, a scalar (E is not an index), is 
the free charge density per unit reference volume, and a superimposed 
dot represents the material time derivative 

D2yt d2
yi(X,t) 

yt Dtl dt2 (1.1.8) 
X fixed 

In Equation (1.1.7), KLj and <D K are given by: 

KLJ=FLj+MLj, 

1 
FLJ = yjjcTL MLJ = -^LME.EJ --EkEkS„), (1.1.9) 

J = det(yiK), T, KL Po 
dy/ 

s7~ 
Et=-4>, 

KL 

and 

<DK= e0JXKJD, = e0JC£zL + <PK, 

yLKEi=-<t>K, (PK=JXK,PI 

(1.1.10) 

<E -Po 
dy/ 

d<Ev 

where 6o is the electric permittivity of free space, Et is the electric field, 
Pt is the electric polarization per unit present volume, and D, is the 
electric displacement vector. <E K is the reference electric field vector, 

and <PK is the reference electric polarization vector. <f> is the electric 

potential. C]}L is the inverse of the deformation tensor, y/ = y/{SKL,cEK) 

is a free energy density per unit mass, which is a function of <E K and the 
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4 Mechanics of Piezoelectric Structures 

following finite strain tensor: 

SKL={yi,Kyl,L-sKL)i2. ( l . i . i i ) 

From Equations (1.1.9) and (1.1.10), we have 

KLJ =yj,KPoT^- + JXL,i£o(EiEj --EkEkSy), 
(1.1.12) 

1 rr~ „ d¥ cDK=£0JC-l
L<EL-p0 

d<EK 

With successive substitutions from Equations (1.1.9) through (1.1.11), 
Equation (1.1.7) can be written as four equations for the four unknowns 
y,(X,t) md<f>(X,t). 

The free energy \j/ that determines the constitutive relations of 
nonlinear electroelastic materials may be written as 

PQW(SKL^K) 

~ „ £ SABSCD
 eABC^A^BC - X ^A^B 

2 2 ABCD 2 2 AB 

1 1 
+ T? SAB$CDSEF + „ * ^A^BC^DE 

6 3 ABCDEF 2 1 /!BC£>£ 

_ 1 _ 1_ 
~~ZUABCD

CEA
CEBSCD X '^•A'^B^'C 

2 O 3 ABC 

! (1.1.13) 

+ "7 , ^ ^BC ^D£ ^FG 
6 2 ABCDEFG 

+ -a <EA<EBSCDSEF+-k <EA<EB<ECSDE 
4 1 ABCDEF 6 3 /1BCD£ 

_ ~ Z ^A^B^C^D H ' 

where the material constants 

2/!flCD 2 ^ B 

C > * bABCD> X , (1.1.14) 
3ABCDEF \ ABCDE 3 ABC 

c , k , a , k , x 
4ABCDEFGH 2 ABCDEFG 1 ABCDEF 3 ABCDE 4 ABCD 
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Three-Dimensional Theories 5 

are called the second-order elastic, piezoelectric, electric susceptibility, 
third-order elastic, first odd electroelastic, electrostrictive, third-order 
electric susceptibility, fourth-order elastic, second odd electroelastic, first 
even electroelastic, third odd electroelastic, and fourth-order electric 
susceptibility, respectively. The second-order constants are responsible 
for linear material behaviors. The third- and higher-order material 
constants are related to nonlinear behaviors of materials. 

For mechanical boundary conditions S is partitioned into Sy and ST, 
on which motion (or displacement) and traction are prescribed, 
respectively. Electrically S is partitioned into S^ and So with prescribed 
electric potential and surface free charge, respectively, and 

SyvST=S,uSD=S, 
y f (1.1.15) 

SynST=S,nSD=0. 

The usual boundary value problem for an electroelastic body consists of 
Equation (1.1.7) and the following boundary conditions: 

(1.1.16) 

where y, and ^ are the prescribed boundary motion and potential, Tt is 

the surface traction per unit undeformed area, and <JE is the surface free 

charge per unit undeformed area. 
Consider the following variational functional: 

y, 

<t>--
= y, 

--$ 

KLkNL 

<DKNK 

on 

on 

= Tk 

Sy, 

S*> 

on 

= -aE or 

Sr, 

sD, 

1 . . 

dV (1.1.17) 

+ [dt\ T,yidS-[dt\ aE<f>dS, 

where 

^(SKL,<EK) = -e0JEkEk =-e0JC^N<EM<EN. (1.1.18) 
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6 Mechanics of Piezoelectric Structures 

The admissible yt and (j) for n satisfy the following initial and boundary 
conditions on Sy and S„>: 

# , L 0 = 0, dy,\t=h = 0 in V, 

yi=y, on S,, f 0 < / < / „ (1.1.19) 

^ = ^ on S^, f0 < f < ^. 

Then the first variation of fl is 

(1.1.20) 

- f dt\ {(DLNL+aE)S4dS. 

Therefore the stationary condition of FT implies the following equations 
and natural boundary conditions: 

KLk,L+Pofk=Poyk in V, 

VK^PE i n V> 

KlkNL=Tk on ST, 

<DKNK=-vE on SD. 

(1.1.21) 

Denoting 

KIM-WJU, fM=fjSfl4, TM=T,SiM, (1.1.22) 

we can write Equation (1.1.7)i and Equation (1.1.20) as 

K-iMj.+PJu=PoyM> (1.1.23) 

and 

< 5 n = f' dtL kKLM,L +PO/M -Poyu)^M 

- f dt\ {cDLNL+aE)8(f>dS. 

(1.1.24) 

''0 *°D 
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Three-Dimensional Theories 1 

1.2 Linear Piezoelectricity for Weak Fields 

In linear theory, we introduce the small displacement vector u = y -
X and assume infinitesimal displacement gradient and electric potential 
gradient. The infinitesimal strain tensor is denoted by 

S»=\(MlJc+uki). (1.2.1) 

The material electric field becomes 

<EK=EiyitK=EiSlK->Ek. (1.2.2) 

Similarly, 

MLJ=0, KLJ=FLJ, <PK^Pk, <DK^Dk. (1.2.3) 

Since the various stress tensors are either approximately zero (quadratic 
or of higher order in the infinitesimal gradients) or about the same, we 
use Ty to denote the stress tensor that is linear in the infinitesimal 
gradients. This notation follows the IEEE Standard on Piezoelectricity 
[3]. Our notation for the rest of the linear theory will also follow the 
IEEE Standard. Then 

KU=FU^TV, Ts
KL^Tkl. (1.2.4) 

For small fields the free energy density can be approximated by 

p0y/{SKL,<EK)--s0JEkEk 

= 2
c
2ABCD

S^cn-eABcZASBC 

1 1 ( 2 } 

—ZX cZA<EB--s<iJEkEk 
2. 2 AB 2. 

where 

2
cijklSijSkl ~eijkEiSjk ~'Z£ijEiEj ~H(Skl>Ek\ 

4=X +c0S„. (1.2.6) 
2 ij 

The superscript E in cijk, indicates that the independent electric 

constitutive variable is the electric field E. The superscript S in sfj 

indicates that the mechanical constitutive variable is the strain tensor S. 
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In Equation (1.2.5) we have also introduced the electric enthalpy H. 
The constitutive relations generated by H are: 

dH E 
Ty - ~TZ- - CijklSkl ekijEk > 

iJ (1.2.7) 
Di = —T7T = eiklSkl + £ikEk • 

dEt 

The material constants in Equation (1.2.7) have the following 
symmetries: 

(1.2.8) 
cijkl -°jikl -cklij> 

ekij = ekji i £ij ~ £ji • 

We also assume that the elastic and dielectric material tensors are 
positive-definite in the following sense: 

c!uSuSuZ0 for any S^Sj,, 

and c J , V B = 0 => SiJ=0, ^ ^ 

£$EiEjZ0 for any E,, 

and efjE,Ej = 0 => E,=0. 

Similar to Equation (1.2.7), linear constitutive relations can also be 
written as [3] 

T =rD,.S., -h...n. . 
(1.2.10) 

(1.2.11) 

T«-

Et-

sv 

A 

-rD V • 
~ cijklc>kl 

= ~"ikl^kl 

= sijkl^kl 

= "ikl^kl 

-KjDk, 

+ P?kDk, 

+ dkijEk> 

+ £lEk> 
and 

Sij = Sijkl*kl + SkijDk ' 

The equations of motion and the charge equation become 

A,, =Pe> 

(1.2.12) 

(1.2.13) 
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Three-Dimensional Theories 9 

where p is the present mass density, and pe is the free charge density per 
unit present volume. The difference between p and po, and that between 
pE and pe are neglected in Equation (1.2.13). 

In summary, the linear theory of piezoelectricity consists of the 
equations of motion and charge (1.2.13), the constitutive relations 

*ij - Cijkl^kl ' ekijEk> 

Di=eijkSjk+£,jEj, 

(1.2.14) 

where the superscripts in the material constants in Equation (1.2.7) have 
been dropped, and the strain-displacement and electric field-potential 
relations 

With successive substitutions from Equations (1.2.14) and (1.2.15), 
Equation (1.2.13) can be written as four equations for u and </>: 

(1.2.15) 

cijkiuk,ij + eko<P,kj +ffi= pi*i> 

e,klUkM~£iAu =Pe-

(1.2.16) 

Let the region occupied by the piezoelectric body be V and its 
boundary surface be 5 as shown in Figure 1.2.1. For linear 
piezoelectricity we use x as the independent spatial coordinates. Let the 
unit outward normal of S be n. 

*3 

Figure 1.2.1. A piezoelectric body and partitions of its surface. 
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10 Mechanics of Piezoelectric Structures 

For boundary conditions we consider the following partitions of S: 

SuuST=S,uSD=S, ( i 2 i 7 ) 

SunST=S0nSD=O, 

where Su is the part of S on which the mechanical displacement is 
prescribed, and ST is the part of 5 where the traction vector is prescribed. 

S^ represents the part of S which is electroded where the electric 

potential is no more than a function of time, and SD is the unelectroded 
part. We consider very thin electrodes whose mechanical effects can be 
neglected. For mechanical boundary conditions we have prescribed 
displacement ut 

Uj -ui on Su, (1.2.18) 

and prescribed traction tj 

Tyni=tj on ST. (1.2.19) 

Electrically, on the electroded portion of S, 

<j> = lj> o n S , , (1.2.20) 

where <j> does not vary spatially. On the unelectroded part of S, the 
charge condition can be written as 

Djnj=-o:
e on SD, (1.2.21) 

where ae is the free charge density per unit surface area. 

On an electrode S^ the total free electric charge Qe can be 
represented by 

g e = f -n,DtdS. (1.2.22) 

The electric current flowing out of the electrode is given by 

I = -Qe. (1.2.23) 

Sometimes there are two (or more) electrodes on a body that are 
connected to an electric circuit. In this case, circuit equation(s) will need 
to be considered. 

The equations and boundary conditions of linear piezoelectricity can 
be derived from a variational principle. Consider [4] 
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Three-Dimensional Theories 11 

-pu,u, - / / ( S , E ) + / / (M, -pj U(u,<f>)= f dt[ 

+ t dt f lutdS- f' <# f avfli^S'. 

rfK 
(1.2.24) 

u and 0 are variationally admissible if they are smooth enough and 
satisfy 

du, I, = du, I, = 0 in V, 

ui=ui on Su, tQ<t<tx, (1.2.25) 

<^-(j> on S^, t0 <t<tx. 

The first variation of fl is 

m = f' dt I [(TJU +pfl-pui )dui + (Dtl - pe )5<f\dV 

- p dt \ {T^j -t^Su^S- p dt f (D,n, + ae)S<f>dS. 
JtQ JST JtQ JSD 

(1.2.26) 

(1.2.27) 

Therefore the stationary condition of Tl is 
Tjij + tfi = put in V, t0<t<tx, 

Dt,i=Pe in V, t0<t<tx, 

Tjinj=ii on ST, t0<t<t{, 

Dini = -ae on SD, t0<t<tx. 

We now introduce a compact matrix notation [3,4]. This notation 
consists of replacing pairs of indices ij or kl by single indices p or q, 
where i, j , k and I take the values of 1, 2, and 3, and p and q take the 
values of 1, 2, 3, 4, 5, and 6 according to 

ij or kl: 11 22 33 23 or 32 31 or 13 12 or 21 

porq: \ 2 3, 4 5 6 

Thus 
T„. (1.2.29) 

(1.2.28) 

Cijkl ~* Cpq' e'1 e T ' i t / ' "ip' - y ' * p 

For the strain tensor, we introduce Sp such that 

S\=SU, S2=S22, S3=S33, 

S4=2S23, S5=2S3l, S6=2Sl2. 
(1.2.30) 
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12 Mechanics of Piezoelectric Structures 

The constitutive relations in Equation (1.2.7) can then be written as 

Tp ~ CpqSq -ekpEk> 

A eiqSq +£ikEk-

In matrix form, Equation (1.2.31) becomes 

A 
A 

f4 

C
E 

c 3 1 

'41 

^51 

VC61 

'31 

'12 

'22 

'32 

'42 

'52 

-62 

'12 

'22 

'32 

'23 

'33 

'43 

'53 

' 63 

= 13 

'23 

= 33 

'14 

'24 

'34 

'44 

'54 

'64 

= 14 

= 24 

= 34 

' 25 

'35 

'45 

'55 

'65 

= 25 

= 35 

,E\ 
'16 

-26 

'36 

' 46 

'56 

' 6 6 / 

5, 

= 12 

= 14 

\e\6 

_ 
16 

26 

3 6 . 

>v 
s2 
s, 
s, 
S5 

• + 

'3\ 

'22 

= 23 

= 24 

= 25 

= 26 

M2 

-.22 

-32 

(1.2.31) 

= 32 

= 33 

= 34 

= 35 

-36 J 

-13 

;22 

'33 

(1.2.32) 

1.3 Linear Theory for Small Fields Superposed on a Finite Bias 

The theory of linear piezoelectricity assumes infinitesimal deviations 
from an ideal reference state of the material in which there are no pre­
existing mechanical and/or electrical fields (initial or biasing fields). The 
presence of biasing fields makes a material apparently behave like a 
different material, and renders the linear theory of piezoelectricity 
invalid. The behavior of electroelastic bodies under biasing fields can be 
described by the theory for infinitesimal incremental fields superposed 
on finite biasing fields [5,6], which is a consequence of the nonlinear 
theory of electroelasticity. This section presents the theory for small 
fields superposed on finite biasing fields in an electroelastic body. 

Consider the following three states of an electroelastic body (see 
Figure 1.3.1). 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد
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Initial 

Figure 1.3.1. Reference, initial, and present configurations of an 
electroelastic body. 

In the reference state the body is undeformed and free of electric 
fields. A generic point at this state is denoted by X with Cartesian 
coordinates XK. The mass density is p0-

In the initial state the body is deformed finitely and statically, and 
carries finite static electric fields. The body is under the action of body 

force f£ , body charge pi, prescribed surface position xa , surface 

traction T^ , surface potential ^° and surface charge a\ . The 

deformation and fields at this configuration are the initial or biasing 
fields. The position of the material point associated with X is given by x 

= x(X) or xY - x/X), with strain S^L • Greek indices are used for the 
initial configuration. The electric potential in this state is denoted by 

0°(X), with electric field E°. x(X) and 0°(X) satisfy the following static 
equations of nonlinear electroelasticity: 

S°KL=(xa,KxatL-SKL)/2, <E°K=-<f>°K, E°a=-£, 

dy/ 
TKL = A) 

55, KL &.& 
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14 Mechanics of Piezoelectric Structures 

J°=det(xaK), 

KL =xaA+<a, K=sQjGxKAxL<yL+<p\, 

Ka = J°XK^0(EX -X-E»E»rSpa), 

In the present state, time-dependent, small, incremental deformations 
and electric fields are applied to the deformed body at the initial state. 

The body is under the action of ft , pE, yt,Tt , <f> and aE . The final 
position of X is given by y = y(X,/), and the final electric potential is 
0(X,f). y(X,/) and 0(X,/) satisfy the dynamic equations of nonlinear 
electroelasticity: 

So. = (y>,Kyt,L So.)12, <EK = -<t>tK, E,=-t 

KLJ = yj,KTlL + MLj, CD K= £0JCK[<EL + cpK, 

TKL=P<> 
dS KL SKL&K 

(1.3.2) 

MLj = JXL,i£0 (EiEj ~^EkEkSij )> 

KLj,L + Pofj = Pofj . ®K,K=PE-

Let the incremental displacement be u(X,t) and the incremental 
potential be <l>l(X,t) (see Figure 1.3.1). u and (j)1 are assumed to be 
infinitesimal. We write y and (j) as 

yi(X,t) = Sia[xa(X,t) + ua(X,t)], 3 

Then it can be shown that the equations governing the incremental fields 
u and 01 are 

KKa,K + Pofa = PoUa > ,. - .. 

®K,K=PE> 
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Three-Dimensional Theories 15 

where fx
a and p\ are determined from 

Ji ~°ia\Ja +Ja)> ,, -, <-s 

o , i U - J - J ; 

PE=PE+PE> 

and the incremental stress tensor and electric displacement are given by 
the following constitutive relations: 

:Lr 
K?„ -(jLyMauaM RMLy'EM, 

K=RKLyUy,L+LKL'E[, 
(1.3.6) 

where <El
K =-$K • Equation (1.3.6) shows that the incremental stress 

tensor and electric displacement vector depend linearly on the 
incremental displacement gradient and potential gradient. In Equation 
(1.3.6), 

^KaLy ~ XaM A ) 
aV 

dSrudS, 

R 

>KMU°LN 

+ TKL5ay+SKaLy =G 

9 > 

y,N 

LyKa' 

KLy -Po 
wKdsML 

2 

XyM + rKLy > 
SKL .% 

LKL ~ Po 
5 > 

S'EK^L 

+ 'KL ~ ^LK • 

where 

gfCaLy ~ S<)J \-EaEp(XK,pXL,y ~XK,yXL,p) 

• F° F° X X 
^a^y^- K,p^- L,p 

r0 r 0 

(1.3.7) 

+ EpEr (XKaXLp - XKJ)XLja) 

+ -^EpE<i(XK,rXL,a ~XK,aXL,y)\ 

YKLy ~£QJ (EaXK,aXL,y ~EaXK,yXL,a ~ Ey X K,aX L,a)> 

(1.3.8) 

'•KL ~ £<)J XKaXLa. 
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16 Mechanics of Piezoelectric Structures 

GKaLy , RKLy , and LKL are called the effective or apparent elastic, 

piezoelectric, and dielectric constants. They depend on the initial 
deformation x«(X) and electric potential 0°(X). 

In summary, the boundary value problem for the incremental fields u 
and (j)1 consists of the following equations and boundary conditions: 

KKaJC + Pofa = PoUa m V> 

KLy = GLyMaUaM + RMLy<S>M i n V> 

®\=RKLyUy,l-L^\ ™ V, 

"a=Ua 

?=? 
KlNL 

<D\NK 

on 

on 

=n 
=-4 

Sy> 

S*> 

on ST, 

on SD 

Consider the following variational functional: 

.1 . . 2 
2 

n(u,<l>X)=[tdt £ (-p0uaiia --GKaLyuKauLy 

jrl „ , 1 , . ! / ! , „ /•! , 1 As 

+ \''dt\ Tx
auadS-Ut\ a^dS. 

(1.3.9) 

•RKLy<t>Wy +-LKLP,KP,L+Pof>a-PEf)dV (1-3.10) 

The admissible u and (j)1 must satisfy 

ua=ua on Su, t0<t<tx, (1.3.11) 

^ = ^ ' on 5 . , t0<t<tv 
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Three-Dimensional Theories 17 

The first variation is found to be 

ai(u, <p) = f' dt f [(K[aL + pX - Poua )Sua 

(1.3.12) 
- £ d t l (K[aNL~Tx)SuadS 

- f'df f {<Dx
KNK+ax

E)8<pdS. 
' '0 "°£> 

Therefore the stationary condition of the functional gives the following 
governing equations and boundary conditions: 

Denoting 

KL,K + Pofa = Po«a i n F> 

®l
K,K=Pl in V, 

KlNL=Tx on ST, 

(Dl
KNK=-al

E on SD. 

*M =TaoaM, uM =uaoaM, 

(1.3.13) 

(1.3.14) 

(1.3.15) 

we can write Equation (1.3.12) as 

<5TI(u,̂ ) = [ dt [ [{Kluj, + pQfM - p0iiM )Suu 

-£dtb {Kx
mNL-f^)duMdS 

-£dt\ (cDx
KNK+al

E)S<{>ldS. 

In some applications, the biasing deformations and fields are also 
infinitesimal. In this case, usually only their first-order effects on the 
incremental fields need to be considered. Then the following energy 
density of a cubic polynomial is sufficient: 
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18 Mechanics of Piezoelectric Structures 

1 _ 1 
POV\^KL^K)-'ZCABCD^AB^CD ~eABC^A^BC ~~ZZAB^A^B 

+ ~7C
 ABCDEFSAB$CDSEF

 +
 'Z^ABCDE'^A^BC^DE (1.3.16) 

n. "ABCD^A^B^CD f- ZABC^A^B^C' 

where the subscripts indicating the orders of the material constants have 
been dropped. For small biasing fields it is convenient to introduce the 
small displacement vector w of the initial deformation (see Figure 1.3.1), 
given as 

xa=SaKXK+wa. (1.3.17) 

Then, neglecting the quadratic terms of the gradients of w and 0°, the 
effective material constants take the following form [5,6]: 

^KaLy = CKaLy + CKaLy ' 

RKLy=eKLy+eKLy> (1.3.18) vKLy ~ cKLy ^cKLy> 

LfCL ~ £KL + £KL ' 

where 

(1.3.19) 

CKaLy =^KL^ay +CKaLNWy,N +cKNLyWa,N 

+ CKaLyAB$'AB + ^AKaLy^A > 

eKLy ~eKLMWy,M ~ ^KLyAB^AB +"AKLy^A 

+ e0(<E°KSLr-<EQ
L5Ky-<E0

MSMrSKL), 

£KL =°KLABSAB + XKIA^-A + £O(SMM"KL ~2SKL), 

1 KL ~CKLAB^AB ^AKL^A' 

S°AB=(WA,B+WB,A)/2> 

EjC =-<P,K-

In certain applications, e.g., buckling of thin structures, consideration 
of initial stresses without initial deformations is sufficient. Such a theory 
is called the initial stress theory in elasticity. It can be reduced from the 
theory for small fields superposed on a bias. First we set x = X. 
Furthermore, for buckling analysis, a quadratic expression of y/ with 
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Three-Dimensional Theories 19 

second-order material constants only and the corresponding linear 
constitutive relations are sufficient. The biasing fields can be treated as 
infinitesimal fields. Then the effective material constants sufficient for 
describing the buckling phenomenon take the following simple form: 

^KccLy ~ CKaLy + ^KL^ay 

RKLY =eKLr+e0CE0
KSLy -<E°L6Kr -<EMSMySKL), (1.3.20) 

^KL = EKl' 

where TKL is the initial stress and <EK is the initial electric field. 

1.4 Cubic Theory for Weak Nonlinearity 

By cubic theory we mean that effects of all terms up to the third 
power of the displacement and potential gradients or their products are 
included [7]. Cubic theory is an approximate theory for relatively weak 
nonlinearities, and can be obtained by expansions and truncations from 
the nonlinear theory in the first section of this chapter. The resulting 
equations are: 

FLj=SJM 
x l 

C UA,B+eALM<P,A+-C UK,AUK,B 
2LMAB 2 2LMAB 

2LKAB '"'"• " ' " 21LMABCD 
"r C UiA fWj H + C UA gUcD 

+ eALKUM,K<t>,A ~ d UBC(j)A --bABLM<f>A<t>B 

1 ABCLM 2 

\_ ]_ 
+ i £ , . UM,RUK,AUK,B + ~C UM,KUA,BUCD 

2 2LRAB 2 3LKABCD 
1 1 

H C XI A RWJP- fXlis r) H C i 
2HMABcD • • ' 6MMABCDEF 

~d> ^,„UB.CUM,K<I>,A —zd UKBUKC<f>A 

1 ABCLK 2 1 ABCLM 

~ ^ i „ D ™ r , „ UB,CUD,E0,A ~-hABLKUM,K<l>,A<t>,B 

1 1 
+T« „ HC.D^.B+7^ Mate 

2 1 ABCDLM 6 3 ABCLM 

(1.4.1) 
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20 Mechanics of Piezoelectric Structures 

(pL=eLBC^B,C X r,A +~ZeLBCUK,BUK,C 
2 AL 2 

O i , D™,- UB,CUD,E "ALCDUC,D^,A 
z, * LBL.DE 

6 2 ZJJCDfiFG B ' C D ' £ F'G 2 MCD ' ' 'A 

1 , 1 . 
+ T ? „ , „ , , „ . UC,DUE,F<P,A + - « UD,E<P,A<P,B 

2 1 ALCDEF 2 3 /fBLD£ 

O 4 ^BCL 

(1.4.2) 

^L/ = « o V # L # M _ ^ <*U #JC ̂ iW - # * # M MK,L 

-<t>,K<l>MUL,K +^JMUK,K ~ W , KUK,M 

+ <t>,K<f>,RUR,KSLM +-<l>,K<t>,KULM ~' ~4\R4»,««'K JC*>LM 

(1.4.3) 

£0JCA'EK =£o[-<f>,L + <f>,KUL,K -<f>,LUK,K +<f>,KUK,. 

Y,MUL,KUKM +Y,KUM,MUL,K ~ Y,LUK,KUM,M 

+ ~Zr,LUK,MUM,K ~r,MUL,KUM,K 

(1.4.4) 

+ <P,MUM,LUK,K ~r,MUM,KUK,L\-

A special case of cubic theory is the case of relatively large 
mechanical deformations and weak electric fields [8]. In this case all 
electrical nonlinearities can be neglected. The following energy density 
is sufficient: 

Po¥ ~~ ~ CABCD^AB^CD eABC^A^BC ~ XAB^A^B 

+ T CABCDEF $AB $CD $EF + T T CABCDEFGH $AB $CD SEF SGH • 
O z 4 

(1.4.5) 
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Keeping the linear terms of the electric potential gradient and up to cubic 
terms of the displacement gradient, we obtain 

K-UA ~CIMRSUR,S +eKLM<P,K 

+ CLMRSKNUR,SUK,N +CLMRSKNUUR,SUK,NUI,J> (1.4.6) 

where 

®K-eKRSUR,S £KLY,L> 

CLMRSKN - ~ \CLMRSKN + CLMNS°KR + CLNRS°KM )> 

CLMRSKNU =~7CLMRSKN1J (1-4.7) 
O 

+ T \CLMKNSJ °RI + CLNSJ °MK °RI + CLNRSIJ °MK )• 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



Chapter 2 

Piezoelectric Plates 

In this chapter we derive two-dimensional equations for a 
piezoelectric plate. First we examine a few exact solutions of vibration 
modes and propagating waves in plates from three-dimensional 
equations. They provide guidance in developing two-dimensional 
theories and serve as criteria for determining the accuracy of two-
dimensional theories. Then two-dimensional plate equations are 
systematically derived. 

2.1 Exact Modes in a Plate 

The specific three-dimensional problems to be examined are the 
thickness-shear vibration of a quartz plate [10] and waves propagating in 
a plate of polarized ferroelectric ceramics [11,12]. 

2.1.1 Thickness-shear vibration of a quartz plate 

Quartz of crystal class 32 is probably the most widely used 
piezoelectric crystal. Plates of rotated Y-cut quartz [4] are particularly 
useful for thickness-shear resonators, filters, and sensors because of the 
existence of pure thickness-shear modes and their frequency stability. 
Langasite and some of its isomorphs (langanite and langatate) are 
emerging piezoelectric crystals which have stronger piezoelectric 
coupling than quartz and also belong to crystal class 32. Rotated Y-cut 
quartz exhibits monoclinic symmetry of class 2 (or C2) in a coordinate 
system (xijc2) in and normal to the plane of the plate. Consider an 
unbounded, rotated Y-cut quartz plate (see Figure 2.1.1). The two major 
surfaces are traction-free and are electroded, with a driving voltage 
Vexp(ia>t) across the thickness. 

22 
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Piezoelectric Plates 23 

X2 

2h X\ 

Figure 2.1.1. An electroded quartz plate. 

2.1.1.1 Boundary value problem 

The boundary value problem is: 

Tjij=Pui> A,/=0> l*2l<*» 

Ty - cijkt^ki ~ ekij-Ek > A = eiki^ki + £tk^k > \ x i \ < n> 

Sy=(uij+uj,i)/2> Ei=-<l>,i> \x2\<K 

l2j 0, •±h, 

0ix2 -h)-0(x2 = -h)- Vexp(ia>t). 

(2.1.1) 

For monoclinic crystals, die material tensors cfjkl, ejjk and efj can be 

represented by the following matrices under the compact matrix notation: 

'13 

^21 

C41 

0 

0 

u22 

C32 

C42 

0 

0 

23 C 

c43 

0 

0 

•-14 

C24 

C34 

C44 

0 

0 

0 

0 

0 

0 

C55 

^65 

0 

0 

0 

c56 

C667 

0 

0 

0 

0 

c13 

0 
"=14 

0 

0 

0 0} 

'25 

c35 

c26 

'367 

c l l 

0 

0 

0 0 

'22 

'32 

'23 

'33 

(2.1.2) 
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24 Mechanics of Piezoelectric Structures 

Consider the possibility of the following displacement and potential 
fields: 

"i = ux(x2)exp(icot), U2=UT,= 0, 

^ = ^(*2)exp(i<ar). 

The nontrivial components of strain, electric field, stress, and electric 
displacement are 

2Sn=ul2, E2=-<j>2, (2.1.4) 

and 

^31 = C56M1,2 + e25^,2> ^12 = C66M1,2 + e26r,2> ^ ,> 

A> = g26Ml,2 - £22^,2> A = e36Ml,2 ~ £23#2 > 

where the time-harmonic factor has been dropped. The equation of 
motion and the charge equation require that 

^21,2 = C66W,,22 + e26^,22 = ~PG)\ , « . „ 

(2.1.6) 
-^2,2 = g26Ml,22 ~ f22r,22 = ^-

Equation (2.1.6)2 can be integrated to yield 

<l> = ̂ ux+Bxx2+B2, (2.1.7) 
f22 

where Bx and B2 are integration constants and B2 is immaterial. 
Substituting Equation (2.1.7) into the expressions for T2\, D2, and 
Equation (2.1.6)1, we obtain 

^21 = C66"l,2 + e26^1> A> = - £ 2 2 5 1 » ( 2 . 1 . 8 ) 

^66M1,22 = _ P G , 2 " l ' ( 2 - 1 - 9 ) 

where 

c66=c66(l + k2
26), &=-&-. (2.1.10) 

f22C66 
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The general solution to Equation (2.1.9) and the corresponding 
expression for the electric potential are 

ux = Ax sin §c2
 + A2 cos<£c2, 

tf> = -^(Ax sin <!pc2 + A2 cos fy2) + Bxx2 +B2, 
(2.1.11) 

'22 

where A i and^2 are integration constants, and 

?=-?-a)2. (2.1.12) 
C66 

Then the expression for the stress component relevant to boundary 
conditions is 

Ti\ =c6 6(4£cos£;2 - ^ s i n ^ + e ^ . (2.1.13) 

The boundary conditions require that 

c66A£ cos #i - c66A2^ sin & + e26Bx = 0, 

c66 Ax£, cos £h + c66A2^ sin gh + e26Bx = 0, (2.1.14) 

2^Axsm%h + 2Bxh = V. 
£22 

We can also add the first two, and subtract the first two from each other: 

c^A^ cos Z;h + e26Bx=0, 

c 6 6 ^ s i n ^ = 0, (2.1.15) 

2^-Alsin^i + 2Blh = V. 
£22 

2.1.1.2 Free vibration solution 

First, consider free vibrations with V = 0. Equation (2.1.15) 
decouples into two sets of equations. For symmetric modes, 

c66,42£sin£/z = 0. (2.1.16) 

Nontrivial solutions may exist if 

sin^/? = 0, (2.1.17) 
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or 

£n)h : nn , H = 0 , 2 , 4 , 6 , (2.1.18) 

which determines the following resonant frequencies: 

CO ,(») nn \CLC "?J—. "-0,2,4,6, 
2/z 

y , * - , - r ? \ / ? 
(2.1.19) 

Equation (2.1.17) implies that B\ = 0 and ^ = 0. The corresponding 
modes are 

uy = cos£(n);c2, </> = -^-cos^ (n)x2, (2.1.20) 
'22 

where « = 0 represents a rigid body mode. For anti-symmetric modes, 

c ^ ^ c o s ^ + e ^ ^ O , 

2 - ^ - 4 sin #r + 2fl,/r = 0. 
522 

The resonance frequencies are determined by 

c66^cos^h e 26 
c26 sin<fjfr 
522 

= c66^hcos^h —— sin J;h = 0, 
'22 

(2.1.21) 

(2.1.22) 

or 

where 

tan^ = -p- , 
*26 

(2.1.23) 

P - ^26 c26 v26 

f22C66 £22C66U "*" *26 ) 1 + «; 26 

(2.1.24) 

Equations (2.1.23) and (2.1.21) determine the resonant frequencies and 
modes. If the small piezoelectric coupling for quartz is neglected in 
Equation (2.1.23), a set of frequencies similar to Equation (2.1.19) with n 
equals odd numbers can be determined for a set of modes with sine 
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dependence on the thickness coordinate. Static thickness-shear 
deformation and the first few thickness-shear modes in a plate are shown 
in Figure 2.1.2. 

Static n = l w = 2 « = 3 

Figure 2.1.2. Thickness-shear deformation and modes in a plate. 

2.1.1.3 Forced vibration solution 

For forced vibration we have A2 = 0 and 

A = 

o s26 

V 2/z e26V 
c^cosgh e26 

sin J;h 2h 2 .£26 

£22 

2c66£hcos£h-2^smZh 
£22 

(2.1.25) 

B, 

c66 |cos#2 0 

2 - ^ s i n ^ V 
e22 

c66£cos|/z e26 

sin EJi 2h 2f26 
£22 

Vc^cosZh 

2c66^h cos Eft - 2 -22- sin ̂ h 
£22 

(2.1.26) 
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Hence 

A 22 1 — 22 
& 

2h&-k£tmgi -°e, (2.1.27) 

where ae is the surface free charge per unit area on the electrode at x2 = 
h. The capacitance per unit area is then 

& 
V 2h 

the following limits: 

l imC = ^ s 
«26->o 2h 

l i m C - * 2 2 

«*-><> 2h 

#-Jfc£tan# 

1 = £22a-
4 M 

^) 

1+fc 26 

(2.1.28) 

(2.1.29) 

2.1.2 Propagating waves in a plate 

Consider an unbounded piezoelectric plate of thickness 2h as 
schematically illustrated in Figure 2.1.3. The major surfaces of the plate 
are traction-free and are electroded. The electrodes are shorted. 

x2 Propagation 
direction 

Figure 2.1.3. Propagating waves in a piezoelectric plate. 
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2.1,2.1 Eigenvalue value problem 

We study straight-crested waves without x^ dependence. Then the 
homogeneous form of Equation (1.2.16) takes the following form: 

C11M1,11 + C12M2,21 + C14W3,21 + C15M3,11 + C16VM1,21 + M 2 , l l ) 

+ C16M1,12 + C26M2,22 + C46M3,22 + C56M3,12 + C66VM1,22 + M2,12) 

+ e i 6 ^ 1 2 + e 2 6 ^ , 2 2 = M ' 

C16M1,11 + C 2 6 M 2 , 2 1 + C46M3,21 + C56M3,11 + C 66V M 1,21 + W 2 , l l ) 

+ ei6<f>u+e26<p2i 

+ CuUll2 +C22W222 + C24M3,22 + C25M3,12 + C 26V M 1,22 + M 2 , 1 2 ) 

+ e i 2 ^ , 1 2 + e 2 2 ^ 2 2 = / C ' " 2 ' 

C15M1,11 + C25M2,21 + C45W3,21 + C55M3,11 + C 56V M 1,21 + M 2 , l l ) 

+ e15^, l 1 + ^ 2 5 0 , 2 1 

+ C14M1,12 + C24M2,22 + C44M3,22 + C45M3,12 + C46 (Ml,22 + M 2 , 1 2 ) 

+ e i 4 ^ , 1 2 + e 2 4 ^ , 2 2 : = / 9 " 3 ' 

e i l M l , l l + e i 2 M 2 , 2 1 + g 1 4 M 3 , 2 1 + e 1 5 M 3 , l l + e i 6 (Ml,21 + M 2 , l l ) 

- ^ 1 ^ 1 1 - ^ 1 2 ^ , 2 1 

+ e2 lM l ,12 + g22M2,22 + g24M3,22 + e25M3,12 + e26VWl,22 + M2,12 ) 

— f 12r ,12 ~E22Y,22 = ^ -

We seek solutions representing waves propagating in the x\ direction: 

"j(*,0 = ̂ exp(£??x2)exp[/(fa, -a*)] , 

^(x,/) = A4 exp(kTjx2)exp[i(kxx - <#)], 

where k and ft) are the wave number in the x\ direction and the frequency, 
respectively. r\k is related to the wave number in the JC2 direction. Aj (j = 
1, 2, 3) and As, are complex constants, representing the wave amplitude. 
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Substitution of Equation (2.1.31) into Equation (2.1.30) leads to the 
following four linear algebraic equations for Aj and A*. 

[pa2 + k2 (^2c66 + i2jjcl6 - c,, ) ]4 

+ k2
 (TJ2C26 + irjc66 + ir)ci2 - c16)A2 

+ k2(TJ2C46 + i?]c56 + irjcu -cX5)A3 

+ k2 (Ji2e26 + irje2X + irjeX6 - e,, )A4 = 0, 

k2(rj2c26 + irjc2i + tyc* -cX6)Ax 

+ [pco2+k2(jj2c22+i2T}c26 -c66)]A2 

+ k2
 (T]2C24 + irjc25 + irjc46 - c56 )A\ 

+ k2 {rfe22 + it]e26 + i?]en - eX6 )AA = 0 

k2(rj2ci6 + iT]cu+irjc56 -cX5)Ax 

+ k2 (rj2cu + irjc46 + ir]c2i - c56 )A2 

+ [pco2 +k2(Tj2c44+ilr]c45 ~c55)]A3 

+ k2 (/72e24 + iT]e25 + ir]eH - ex5 )AA = 0, 

{t]2e26 + iT]e2x+irjeX6-en)Ax 

+ (.n2e22 + iWin + i?1eu ~e\(,)Ai 

+ (rfe24 + i?]e25 + iT]eX4 -ex5)A3 ^ ^ 

- ( ^ 2 2 +*2i7ff12 - c u H =0-

For nontrivial solutions ofv4y and/or A4, the determinant of the coefficient 
matrix of the above equations must vanish. This leads to a polynomial 
equation of degree eight for r\. We denote the eight roots of the equation 
by r\{m), and the corresponding eigenvectors by (^m),^44

(m)), m = 1, 2, 

..., 8. Thus, the general wave solution to Equation (2.1.30) in the form of 
Equation (2.1.31) can be written as 

8 _ 
ui = ZC(m)4 ( m ) e*P(kri{m)x2)exp[i(kxx - ox)\ 

m
g
=1 (2.1.33) 

<* = SC('«)^t(m) ®cp(*»7(»,)*2)exP[*(**i ~ ** ) ! 
m=\ 
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where the constants C(m) (m = 1, 2, ..., 8) are to be determined. 
Substituting Equation (2.1.33) into 

T2J(x2 = ±h) = [c2jklukJ + ek2J£k]X2=±h = 0 (2.1.34) 

and 

<f>(x2=±h) = 0 (2.1.35) 

yields the following eight linear algebraic equations for C(m): 

8 _ _ _ 

2_J(cuiAl +c22rj(m)A2 + c24rj(m-)A3 
m=\ 

-t-c25m3 -•-t-2677(m)̂ j + c26m2 

+ el2a\m) +e22r1{m)Aim))e±k^hC{m) = 0, 

m=\ 

+ C56L^3 +C 6 6 77 ( m ) ^ , + C 6 6 M 2 

-t- e 1 6 M 4 + e26T/(m)Ji4 ) e ^-(m) ~ U> 

8 _ _ _ 

^(c14L4, +c24rj(m)A2 + c^ri^A^ 

+ c45iA^+c46i1{m)^+c46U
<f) 

+ eX4iA\m) +e24T}{m)A^)e±k^hC(m) = 0, 
s 

7(m) ±*I7(„)A, 1 ^ * ^ c ( m ) = o . 
7=1 (2.1.36) 

For nontrivial solutions of Qm), the determinant of the coefficient matrix 
of Equation (2.1.36) has to vanish, which yields the frequency equation 
that contains co and k. The above derivation is for materials with general 
anisotropy. 
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2.1.2.2 Numerical example 

As a numerical example, consider a plate of polarized ceramics poled 
in the x^ direction with 

0 

0 

h\ 

0 

0 

g31 

\x 
C\2 

Cl3 

0 

0 

, 0 

0 

0 

£33 

C12 

c l l 

C13 
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0 

0 

0 

«15 

0 

Cl3 

^13 

C33 

0 

0 

0 

£15 

0 

0 

0 0 

0 0 

0 0 

C44 0 

0 C44 

0 0 

0" 

0 

0 
? 

( 
«11 

0 

0 

(O 
0 

0 

0 

0 
C 66 , 

J 

0 0" 

*n 0 
0 S33J 

(2.1.37) 

where c^ = (c\\ - C\2)I2. Polarized ceramics are transversely isotropic. 
Their linear behavior described by Equation (2.1.37) is the same as 
crystals of 6mm symmetry. For the above straight-crested waves, when 

co I co 

Figure 2.1.4. Dispersion relations of waves in an electroded ceramic plate 
poled along the x3 direction. 
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the poling direction is along the x%, axis, u\ is coupled with w2, and W3 is 
coupled with 0, but the two groups do not couple to each other. The 
dispersion relations (co versus k) for PZT-5H are plotted in Figure 2.1.4. 

There exist an infinite number of branches of dispersion relations. 
Only the first nine branches are shown. The wave frequencies are 
normalized by the lowest thickness-shear frequency 

(2.1.38) 

The dispersion relations are labeled as follows, along with the dominant 
displacement component at small wave numbers: 

E = extension (wi), 

F = flexure (w2), 

FS = face-shear (z/3), 

TSh = thickness-shear (u\), 

TSt = thickness-stretch (1/2), 

TT = thickness-twist (w3), 

R = Rayleigh surface wave {u\ and u2), 

BG = Bleustein-Gulyaev surface wave (W3). 

In the figure, the three branches passing the origin are the so-called low 
frequency branches. They represent the extensional, flexural, and face-
shear waves. The other six branches are high-frequency branches, which 
have finite intercepts with the (O axis. These intercepts are called cutoff 
frequencies, below which the corresponding waves cannot propagate. 
Cutoff frequencies are in fact the frequencies of pure thickness modes. 
The six high frequency branches shown represent three thickness-shear 
waves, one thickness-stretch wave, and two thickness-twist waves. One 
of the two dotted lines in the figure is the well-known Rayleigh surface 
wave, which can propagate over an elastic half-space and is not 
dispersive. The other dotted line is the well known Bleustein-Gulyaev 
surface wave which has only one displacement component z/3 and can 
propagate over a piezoelectric half-space but does not have an elastic 
counterpart. These two surface waves are included as references. It is 
seen that for short waves with larger k, the frequencies of the extensional 

co„ 
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and flexural waves approach that of the Rayleigh surface wave. 
Similarly, for short waves, the frequencies of the face-shear wave 
approach that of the Bleustein-Gulyaev wave. 

2.2 Power Series Expansion 

Consider a piezoelectric plate (see Figure 2.2.1). The plate is 
assumed to be thin in the sense that its thickness is much smaller than the 
in-plane dimensions or the in-plane wavelength we are interested in. The 
key to the derivation of two-dimensional plate equations is the 
approximation of the variation of the fields through the plate thickness 
(see Figure 2.1.2) by some known and simple functions. Then plate 
equations can be derived systematically by inserting the approximate 
fields into the variational formulation of the three-dimensional theory. 
This procedure can be traced back to Cauchy, Poisson and Kirchhoff 
according to Mindlin [13]. The resulting two-dimensional plate equations 
are much simpler than the three-dimensional equations, and therefore 
often allow analytical solutions. 

Figure 2.2.1. A thin piezoelectric plate. 
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2.2.1 Expansions of displacement and potential 

2.2.1.1 Polynomial approximation of thickness modes 

The exact thickness modes (except the static one) are sinusoidal 
along the plate thickness (see Figure 2.1.2). Since power series are 
simple to differentiate and integrate, early approximations of the 
thickness variations of the fields were in terms of power series. This 
approximation can be very accurate because trigonometric functions can 
be well approximated by power series. For example, in Figure 2.2.2, the 
first and the second thickness-shear modes in Figure 2.1.2 are compared 
with two simple polynomials, where 

Black triangle: y = sin m 12, 

3 *3 

Cross: v = — (JC ), 
y 2V 3 (2.2.1) 

Square: y = cos TDC, 
White triangle: y = 2(x2 -1)2 - 1 . 

Figure 2.2.2. Thickness-shear modes and their polynomial 
approximations. 
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2.2.1.2 Polynomial expansions 

In a series of papers [14-17], Mindlin developed theories for high 
frequency vibrations of isotropic, anisotropic, and piezoelectric plates by 
power series expansions in the plate thickness coordinate. We now 
derive two-dimensional equations for a piezoelectric plate in the manner 
of [17]. First we expand the mechanical displacement and the electric 
potential into power series in xj, 

00 

"=0 (2.2.2) 

Our goal is to obtain two-dimensional equations for u\n) and tf>(n). The 
lower order two-dimensional displacements can describe the following 
deformations: 

Wj(0), «20) _ extension, 

uf* - flexure, 

u{l\u^- fundamental thickness-shear, 

u^ - fundamental thickness-stretch, 

wP),«22) - symmetric thickness-shear, 

For piezoelectric device applications we want to derive plate 
equations that can describe the thickness-shear and thickness-stretch 
deformations well. It is important to note that these deformations have 
different behaviors in static and dynamic problems. For example, the first 
or fundamental thickness-shear mode of n = 1 in Figure 2.1.2 is 
sinusoidal along the plate thickness. However, the static thicken-shear 
deformation shown in the same figure is linearly varying along the plate 
thickness. Therefore the fundamental thickness-shear has different 
distributions along the plate thickness in static and dynamic problems. 
One simple expression can only approximate either the static or the 
dynamic deformation well, but not both. 
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We are mainly interested in dynamic problems. Obviously the 
sinusoidal variation of the fundamental thickness-shear deformation can 
be well approximated by a cubic polynomial. However, we are not 
interested in accurately describing the field variation along the plate 
thickness. Our main goal is to develop plate theories than can predict the 
frequencies and dispersion relations of these modes accurately. For this 

purpose, following Mindlin, we use a linear function x3u^\xux2,t), a = 
1, 2, to approximately describe the fundamental thicken-shear motion. 
The main advantage of using a linear function is its simplicity. The error 
due to the approximation in resonant frequencies can be reduced or 
removed by introducing some correction factors. Overall this is a simple 
and accurate approach. 

Shear correction factors are essentially not needed when using 
sinusoidal or higher-degree polynomial approximations for thickness-
shear modes in the sense that the thickness-shear frequencies can be 
predicted exactly or accurately. This approach involves more algebra. In 
addition, the static thickness-shear behavior cannot be described well by 
a sine function or a cubic or higher-degree polynomial. Hence 
corrections may be needed for low frequency behaviors. 

2.2.2 Strains and electric fields 

From Equation (2.2.2) and the strain-displacement relation and the 
electric field-potential relation in Equation (1.2.15), we obtain 

Sy=^Sf\ E^^E}*, (2.2.3) 
n n 

where 

W 4^"' + "V + {n +1)(<^"+1) + ^ M < " + I ) ) ] ' ( 2 . 2 4) 
EJn)=-</>f-(n + l)53/"

+l). 

The first few orders of strains and electric fields have the following form: 

e(0) _ „(0) v(0) _ (0) 9(0) _ (l) 
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5<4
,)=«g + 2«(2)

> ^ > = I4J> + 2II[2>, S ^ u g + ^ J . ( 2 '2 '6 ) 

e(2) _ ,.(2) r,(2) _ (2) - ( 2 ) _ ~ (3) 

S f ^ a g + 3 1 ^ , 5<2>=i4J + 3a{3>, 5<a> = iig> +1^>, ( 2 ' 2 ' 7 > 

E{0) = -<f>?\ E^ = -<j>f, £<°> = - / ' > , (2.2.8) 

E{l) = -$\ £<» = -$>, £3
(1) = - 2 ^ 2 ) , (2.2.9) 

£ , ( 2 ) =-$ 2 ) . E?=-$\ £<2>=-30(3). (2.2.10) 

The zero-order plate strains in Equation (2.2.5) describe homogeneous 
deformations of a plate element. The first-order strains in Equation 
(2.2.6) represent higher-order deformations of a plate element like 
curvature and twist, etc. Pictures of zero- and first-order deformed plate 
elements can be found in [13]. 

2.2.3 Constitutive relations 

The plate resultants of various orders are defined by 

7j"> = J * / ^ , A(n) = [hDiX"3dx3. (2.2.11) 

Substituting the three-dimensional constitutive relations from Equation 
(1.2.14) into Equation (2.2.11), we obtain the plate constitutive relations 
as: 

Iij _ Z J mn(- Ukl kl ekij£'k h 

(2.2.12) 
D^=^Bmn(eiJkS^+evE^), 

where 

Bmn=\h
 x»x»dXiJ

2h /(« + » + lX « + » even, ^ ^ 
•>-* 0 . m + n odd. 0, m + n odd. 
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Pictures of zero- and first-order plate resultants are given in [13]. They 
represent extensional and shear forces, and bending and twisting 
moments, etc. 

2.2.4 Equations of motion and charge 

We use the variational formulation in Equation (1.2.26) to derive the 
plate equations of motion and charge. For convenience we introduce a 
convention in which subscripts a and b assume 1 and 2 only but not 3. 
Let A be a two-dimensional area in the x\-x2 plane with a boundary curve 
C. Then Equation (1.2.26) can be written as 

m= £ dt\A dAJ^ dx3[(Taja+ tfj-pujWj+T^&ij] 

+ f dt\ dA\\ dx3[(Daa-pe)S<f> + DX3S<f,] 
J'; lA 7 (2.2.14) 

- f dt[' dl\"dx^T^-tj)^ 

- f dt\ dl\h dx3(Dana + ae)S</>, 
J<o JCD J-h 

where CT has prescribed traction and CD has prescribed surface charge. 
Substituting Equation (2.2.2) into Equation (2.2.14), with integration by 
parts with respect to x3 and time, we obtain 

n ° V. m 

+ Z t dt\ {D%-nDtl)+0M)5^dA 
Jtn JA 

m) 

J 

SufdA 

(2.2.15) 

" Z \';dtj(T^na-I^)Sufdl 

- Z {'dt\ (D^n^a^W dl, 
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where the body and surface loads of various orders are defined by 

Din) = K A ] - „ - \h_hPe*3dx3, (2.2.16) 

^ = £ 0 * 3 * 3 . ^ B > = f / X * 3 -

For independent variations of du^n) and <5^(n), we obtain 

7g-ii7g-I>+F<->=p2M") in ^ 

^-"r'+B^o in A ( 2 2 1 7 ) 

7}">»B=/;-> on Cr, 

^">iiB=-a<-> on CD. 

We note that electrodes in fact impose constraints on S<j)(n) [18]. This 
will be discussed in the next section. 

In addition to power series expansions, it was pointed out in [13] that 
trigonometric series could also be used. Two-dimensional equations 
obtained from trigonometric expansions were given in [19-21]. More 
references on various expansions can be found in a review article [22]. In 
this book we mainly focus on power series expansions. We note that the 
following polynomial expansion of the electric potential [23]: 

</> = ^(0) + x3<f>m + (x2 - h 2 ){(j)(2) + x 3 / 3 ) + • • •) (2.2.18) 

has an important feature, i.e., only the first two terms do not vanish at 

x^=±h. Therefore only ^(0) and tf>m are responsible for the voltage 

across the plate thickness. Then in the plate equations of electrostatics 
only the zero- and first-order equations have surface charge terms. These 
will make it convenient for an electroded plate, especially for higher 
order equations. 
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2.3 Zero-Order Theory for Extension 

In this section we develop equations for extensional motions of thin 
plates. The propagation of extensional and face-shear waves is examined 
and compared with the three-dimensional solutions so that the range of 
applicability of the plate equations can be established. The equations are 
specialized to plates of polarized ceramics. As an example, the equations 
are used to study radial vibrations of a circular ceramic disk. 

2.3.1 Equations for zero-order theory 

By a zero-order theory we mean a theory for extensional motions of 

a plate with w,(0) and i/<°> as the major displacements. For the electrical 

behavior of the plate we are interested in what is governed by ^(0) and 

$m. The approximate displacement and potential fields are 

' ' 3 ' (2.3.1) 

<f> = ^ + x3f\ 
Although we are mainly interested in w1

(0) and tip, we have included a 

few other displacement components in Equation (2.3.1). Among these 

additional displacements, u^ represents the thickness stretch or 

contraction accompanying extension due to Poisson's effect, and must be 

included, w^ describes flexure. w,(1) and u^ represent thickness-shear. 

From Equation (2.2.5) it can be seen that w^0) together with u[{) and u^ 

contribute to thickness-shear deformations S^ and S^ , which may 
couple to extension due to anisotropy and should be allowed. The two-
dimensional plate equations we will obtain are for the extensional 

displacements w,(0) and M£0) . Other displacements will be eliminated 
through a stress relaxation procedure. Within the approximation in 
Equation (2.3.1), the strains and electric fields in Equations (2.2.5), 
(2.2.8) and (2.2.9) become: 

e(0) _ ,.(0) o(0) _ (0) ?(0) _ (l) 

o i o o i o o o (2-3"2) 

O4 = I/3 2 + W2 ' "5 = ^ 3 1 ~*~ " l ' " 6 = "l 2 "** ^2 1 ' 
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E™ = -$\ 40)=-$\ E^=-f\ (2.3.3) 

EF^-flK 4l) =-*$>, 4l) = 0. (2.3.4) 

Higher order strains SJP are neglected. 

From Equation (2.2.17)i, for 7 =1 ,2 and n = 0, we obtain 

TZ+F^ = 2hpiif\ a,b = \,2, (2.3.5) 

where we have truncated the right hand side by keeping the 5oo term only 
in the summation. 

For the electrostatic equations we discuss several cases below. In 
the theory of piezoelectricity the electric potential is at most a function of 
time on an electrode. For example, if both the top and bottom surfaces of 
the plate are electroded, we can write 

<b = VAt), x,=h, W l 3 (2.3.6) 
t = V2(t), x3=-h. 

Since 

we have 

^ s ^ ( 0 ) + V ( 1 ) , (2.3.7) 

Equation (2.3.8) imposes constraints in the variational formulation in 
Equation (2.2.15). These constraints can be systematically treated by the 

method of Lagrange multipliers [18]. In our case with ^(0) and ^(1) only, 

the constraints are relatively simple so we will proceed in the manner of 
[24,25]. We discuss four possibilities separately. 

(i) An unelectroded plate 

In this case S<j>^ and StfP are independent functions of x\, x2 and /. 

We have the following two-dimensional equations of electrostatics: 

Z><°>+JD
(0)=0, 

(2.3.9) 

Dm-D^+Dm = o. 
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(ii) A symmetrically electroded plate 

In this case JC3 = ±h are both electroded. ^(0) and ^(1) are directly 

determined by Equation (2.3.8) as functions of time. No differential 

equations for ^(0) and ^(1) result from Equation (2.2.15) and no 

differential equations are needed for determining ^(0) and ^(1). 

(iii) A plate with the upper surface electroded 
From Equation (2.3.8)1 

S<f>m + h8<f>m=0. (2.3.10) 

Substituting Equation (2.3.10) into Equation (2.2.15) we obtain 

- KDi0)
a + Dm) + D% - D^ + Dm = 0. (2.3.11) 

Since ^(0) and ^ are related by (2.3.8)1, we only need one differential 

equation (2.3.11) to determine one of them. When the upper surface is 
electroded, D3(h) is unknown. Equation (2.3.11) can also be obtained by 

eliminating D3(h) between Equations (2.3.9)i and (2.3.9)2. This 
procedure can also be used to treat prescribed displacement on a major 
surface of a plate when using two-dimensional equations [26]. 

(iv) A plate with the lower surface electroded 
From Equation (2.3.8)2 

S<f>m-hS<f>m = 0. (2.3.12) 

Substituting Equation (2.3.12) into Equation (2.2.15) we obtain 

h(D(0) + Z )0>) ) + Z,(i) _D(o) +Dm = 0 j ( 2 . 3 . 1 3 ) 

which is equivalent to eliminating D3(-h) between Equations (2.3.9)i 

and(2.3.9)2. 
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For plate constitutive relations, we truncate Equation (2.2.12) by 
keeping the B0o and Bu terms only in the summation: 

Tp = 2h(c,klSW-ekyEJ?), 

D^^lhie^Sf+s^), (2.3.14) 

nd) - ^ L £ £m 

' ~ 3 a J ' 

where SJP have been neglected. Since S^0) contains w^0) and wf' , 

Equations (2.3.14) are not yet ready to be used for a theory of extension. 
To obtain the proper constitutive relations for extension we proceed as 
follows [13]. Since the plate is assumed to be very thin and for extension 
the dominating stress components are Tn, T& and Tn, we take the 
following to be approximately true: 

7 j 0 ) = 0 . (2.3.15) 

Equation (2.3.15) is called stress relaxation. According to the compact 
matrix notation, with the range of p, q as 1, 2, ... and 6, Equation 
(2.3.15) can be written as 

rg
( 0 )=0, 9 = 3,4,5. (2.3.16) 

For convenience we introduce another index convention in which 
subscripts u, v, w take the values 3, 4, and 5 while subscripts r and s take 
the remaining values 1, 2, and 6. Then Equation (2.3.14)i>2 can be written 
as 

T^=2h{crsST+CruST-ekrEf\ 

rv
(0) = 2/*(cvA

(0) + c ^ - e ^ ) = 0, (2.3.17) 

where Equation (2.3.16) has been used. From Equations (2.3.17)2 we 
have 

%0)=-clcJir>+c2ekA°>. (2.3.18) 
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Substitution of Equation (2.3.18) into Equations (2.3.17)1>3 gives 

DP = 2h{WisS^ ^ijEf), ( -

where the material constants relaxed for thin plates are 

Yrs ~ Crs ~ CrvCvwCws' f,S — 1,Z,0, 

Wks = eh ~ tkwCvlcvs' v,w = 3,4,5, (2.3.20) 

Gkj = £kj + ekvCvwejw J>* = 1>2,3. 

In summary, in the case of an unelectroded plate, we have obtained 

TZ+Fl0)=2hpuf\ a,b = 1,2, 

D%+D^=0, 

Dill-D^+Dm=0, 

T^ = 2h(rrsSf) - ¥krE^\ r,s = 1,2,6, 

DP = 2h(M,isSf) + Z,jEf\ (2.3.21) 

C(0) _ „(0) -(0) _ (0) r.(0) _ (0) (0) 
"1 — "l,l > ° 2 ~~ "2,2 ' ° 6 — "1,2 + " 2 , 1 » 

E[V=-$\ E^=-$\ E^ = -<f>m, 

E™=-$\ E$> = -$\ ^ = 0 . 

With successive substitutions from Equations (2.3.21)4.9, Equations 

(2.3.21)i_3 can be written as four equations for u[°\ uf\ ^(0) and ^(1). 

At the boundary of a plate with an in-plane unit exterior normal n and an 
in-plane unit tangent s (see Figure 2.2.1), we may prescribe 

ri„0) or u™, r„f or ui°\ 

Di0) or </>m, D™ or f \ 

When electrodes are present the differential equations are fewer, and so 
are the boundary conditions. 
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We note that in Equation (2.3.21) only Sf* or u[0) and u^ are 

involved. The other three strain components ££0) (u = 3, 4, 5) are due to 
Poisson's effect for couplings among extensions in different directions, 
and couplings between extensions and shears in anisotropic materials. 

S^ and the related displacement components u^ and w,(1) can be 
determined approximately from the stress relaxation condition in 
Equation (2.3.18) once the solution to Equation (2.3.21) has been 
obtained. 

Compared to Poisson's effect for couplings among extensions in 
different directions, couplings between extensions and shears in 
anisotropic materials are usually weaker and do not even exist in certain 
crystal classes. If couplings between extensions and shears are neglected 
as an approximation, a simpler stress relaxation can be performed. From 
Equation (2.3.14)i, by setting /' =j = 3, we require 

4 0 ) = 2h(cmiS^ - eki3E^) = 0 . (2.3.23) 

This implies the following expression for S$ : 

^33 = ( C 3 3 i A _ C3333^33 ~ ek33^k ) • ( 2 . 3 . 2 4 ) 
C3333 

In Equation (2.3.24), S^> has been eliminated on the right hand side 

because when / = j = 3, the two terms containing Sf3 cancel with each 
other. From Equation (2.3.24) the thickness expansion or contraction 
accompanying the extension of the plate due to Poisson's effect can be 
found if interested. Substituting Equation (2.3.24) back into Equations 
(2.3.14)i2, we obtain the following constitutive relations relaxed for thin 
plates: 

7f=2/^rf-^0)), (2325) 

Jf>=2*rf + V30)). 
where the relaxed material constants are defined by 

Cijkl = Cijkl ~ Cij33C23kl ' C3333» 

Ck,j = ekij ~ e*33C33y /C3333> ( 2 . 3 . 2 6 ) 

^ij ~ £V + e /33 e y33 ' C3333 • 
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We note that the right hand sides of Equation (2.3.25) do not contain 

SfJ and T ^ =0 is automatically satisfied by Equation (2.3.25). When 

using Equation (2.3.25) for extension, Sf^ and S3^ are taken to be zero. 

The structures of the cpq and e~jq matrices are 

tcJ = 

[«J = 

s 

/ — 
Cll 

C21 

0 

C41 

?S1 

\C6\ 

"«ii 
g21 

_?31 

C12 

C22 

0 

C42 

C52 

C62 

g12 

e12 

e 32 

0 

0 

0 

0 

0 

0 

0 

0 

0 

C14 

C24 

0 

C44 

C54 

c64 

«14 

e 2 4 

g 34 

ClS 

C25 

0 

C45 

C55 

c65 

% 
e 25 

*35 

^16 

C26 

0 

S46 

^56 

C 6 6 , 

*16 " 

e 26 

« 3 « . 

(2.3.27) 

(2.3.28) 

2.3.2 Extensional and face-shear waves 

To examine the basic behavior of the two-dimensional equations 
obtained, consider the propagation of the following extensional wave in a 
plate with traction-free surfaces which are electroded and the electrodes 
are shorted: 

M,(0) =exp/(£*i -cot), 

^ » = 0 , ^ ( 1 ) =0. 

In this case Equation (2.3.21) reduces to 

/ l l " l , l l P"l • 

i/f =0, 
(2.3.29) 

(2.3.30) 

Substitution of Equation (2.3.29) into Equation (2.3.30), we obtain the 
dispersion relation of the wave as 
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Similarly, if we consider the propagation of the following wave: 

,(°) ,(°) 0, u\' = exp/(^c, -cot), 

0<°>=O, ^ ( 1 ) =0, 

which is called a face-shear wave, Equation (2.3.21) reduces to 

/66"2,11 — y"2 ' 

and the corresponding dispersion relation is 

CO 
y66 

(2.3.32) 

(2.3.33) 

(2.3.34) 

We plot the dispersion relations in Equations (2.3.31) and (2.3.34) 
qualitatively in Figure 2.3.1. Face-shear waves usually have a lower 
wave speed (slope) than extensional waves. 

Extension 

Face-shear 

Figure 2.3.1. Dispersion relations of extensional and face-shear 
waves. 

We note that the exact dispersion relations of extensional and face-shear 
waves in Figure 2.1.4 are curved, representing dispersive waves. The 
approximate dispersion relations in Figure 2.3.1 are straight lines for 
nondispersive waves. These straight lines correspond to the tangents of 
the corresponding curves in Figure 2.1.4 at the origin where the 
frequency is low and the wave number is small. Therefore the 
approximate two-dimensional equations we have obtained are low 
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frequency, long wave approximations of the three-dimensional theory. 
They are valid when kh/ln « 1, or the wave length is much larger than 
the plate thickness. This gives a dynamic criterion of whether a plate is 
thin or not. It is relative to the wave length we are considering. 

2.3.3 Equations for ceramic plates 

We consider two cases of ceramic plates with thickness and in-plane 
poling. 

2.3.3.1 Thickness poling 

First consider a ceramic plate with thickness poling (see Figure 
2.3.2). 

x3 

t 2h X\ 

Figure 2.3.2. A ceramic plate with thickness poling. 

The material tensors ciJkl, eijk and etj are given by the matrices in 

Equation (2.1.37). For these materials there is no coupling between 
extension and shear. The stress relaxation in Equation (2.3.15) yields the 
following results: 

[ / „ ] = 

[?*•] = 

-12 

-11 

0 

0 

0 0 c, 

0 

0 

66 

0 

0 
~p 
; 33 

Wh\ = 

0 

0 

e31 

0 

0 

r,s = 1,2,6, £,./ = l,2,3, 

(2.3.35) 
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(2.3.36) 

where 

tfi =4 -(cf3)2/4 = *V[fan)2 "(4)2]> 
C12 = C 1 2 " f a n ) ' C 3 3 = _ 5 1 2 ' [ f a l l ) - ( 5 1 2 ) ]> 

C66 = C66 = ^ ' , S ' 6 6 = fall ~CVl)'*-> 

e3\ - eZ\ ~ e 33 C 13 ' C33 = "31 ' f a l l + ^U ) ' 

-,P _ _S 2 I E 
b\\ ~ fcll ^ e 1 5 ' c44> 

f 33 = ^33 + e33 ' C33 = f 33 ~~ ^"H^l. 

c ^ , e? and £? are common notations for these plate material constants 

[3] which clearly indicate that the constants are for a plate. The 
constitutive relations then take the following form: 

T^=2h(c^+c{2u%-e^), 

4°> = 2Kcf2uM + c1><°2
) -e^Ef\ (2.3.37) 

Df>=2he(xE?>, 

DP-lKe&uW+e&EW), 
(2.3.38) 

DV=-h3ent$>. (2.3.39) 

Substitution of the above into the equations of motion and charge gives: 

(2.3.40) 
rpum +c M(0) +(cp +c W0 ) +epcb{l)+ — F ( 0 ) - ou(0) 

C l l " l l l + C"66M1,22 +VC12 +c66)u2,l\ + e3lr,l + „ , r \ ~ Hu\ > 

2« 
VC12 +C66)"\,12 + C66U2,U + C l l " 2 , 2 2 + e3lV\2 + O/z _ 2 ' 

2« 

2n 

(2.3.41) 
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The stress relaxation in Equation (2.3.23) yields: 

P„] 

v2x 

0 

0 

0 

0 

[eiq} = 

= 31 

[*«] = 0 

0 

cf2 0 

0 0 

0 0 

0 0 

0 0 

'31 

0 

0 
FP 

fc33 

0 

0 

0 

0 

0 

0 0 0 0 

0 0 0 e 15 

0 0 

0 

0 

0 

0 
C44 

0 

0 

0 

0 

0 

0 

C66 7 

el5 0 

0 0 

0 0 

, eu - £n - en dl5 /s 5 5 • 

(2.3.42) 

(2.3.43) 

(2.3.44) 

2.3.3.2 In-plane poling 

Next consider a ceramic plate with in-plane poling along the JCI 
direction (see Figure 2.3.3). 

2h 

x3 

Xi 

Figure 2.3.3. A ceramic plate with in-plane poling. 

In this case the material matrices can be obtained by tensor 
transformation or reordering rows and columns of the matrices in 
Equation (2.1.37) properly, with the result [9]: 
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e 33 

0 

0 

fc 
6 33 

Cl3 

C 1 3 

0 

0 

, 0 

e31 e31 

0 0 

0 0 

C13 

Cll 

C12 

0 

0 

0 

0 

0 

0 

% 

C12 

c l l 

0 

0 

0 

0 

0 

«1S 

0 0 

0 0 

0 0 

^66 0 

0 c44 

0 0 

0" 

*1S 

0 
3 

£ 3 3 

0 

0 

o N 

0 

0 

0 

0 

C 4 4 , 

5 

0 0 

£U 0 

0 £l 

(2.3.45) 

where the elements of the matrices have the same meaning as those in 
Equation (2.1.37). For example, c33 is always the stiffness in the poling 
direction. The indices of the elements of the matrices in Equation 
(2.1.37) represent the positions of the elements in the matrices, but the 
indices of the elements of the matrices in Equation (2.1.45) do not. The 
stress relaxation in Equation (2.3.15) yields the following results: 

[y»] = 

[?*] = 

Yu 

Yn 
0 

£n 
0 

0 

Yn 

Yl2 

0 

0 

*n 
0 

0 

0 

C44 

0 

0 

^33 

[Vfa] = 

Vu 
0 

0 

Yn 
0 

0 

0 

'15 

r,s = 1,2,6, k,j = 1,2,3, 

(2.3.46) 

where 

, £ \ 2 E ~E 
Y\\ ~ C 3 3 ~\C\i) ' C\\i Yl2~CU C12C13 /C11> 

44' Yi2-C\\~\cn) ' c n » C 4 4 - C 4 4 - I / J 

F 1 F F 1 F 
Yil = g33 _ g 31 C 13 ' C l l ' ^12 = g31 _ e 3 1 C 1 2 ' C l l ' 

?n = 4 + 4 ^ 11' £•11 = £• 11' ^33 _ £U + e i 5 ' C44-

(2.3.47) 
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The constitutive relations then take the following form: 

T^=2Kruu^+nA0}-^^0)l 
T2f =2h(ynu\y+y22u?l -yfuE™\ (2.3.48) 

Ijf =2Mc44(<2
)+*4°,))-%£n 

Z)f =2M%(K,(°2) +«g )) + f n ^ 0 ) ] , (2.3.49) 

D f ) = 2 ^ 3 3 ^ 0 ) , 

A ( , )=-f*3^a0). 
(2.3.50) 

(2.3.51) 

Substitution of the above into the equations of motion and charge gives: 

ru«w +C44«S +(ri2 +C44)M^2
)
1 

2n 

Ol2 +C44)«U2 +C44«2°n + T ^ S 

2« 

^ l i r . n fci 1 ,̂22 

+ VuKffi + e15«W + (<p12 + els )K<°>2 + -±-Dm = 0, (2.3.52) 
2« 

-*334i¥ " ^ +M-2C3J
m +7TT^(1) =0-

J3_ 
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The stress relaxation in Equation (2.3.23) yields: 

F«] = 

'11 

-21 

0 

0 

0 

0 

C12 

C 22 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

C 66 

0 

0 

0 

0 

0 

0 

C 44 

0 

0 

0 

0 

0 

0 

Cu 44 J 

(2.3.53) 

[e,J = 

eu en 0 0 0 

0 0 0 0 0 

0 0 0 0 e 15 

;15 (2.3.54) 

where 

[%]: 
*11 

0 

C l l — C33 C13 ' C l l ' 

Ml 

0 

0 

0 0 E 11 

'12 — C13 C 12Pl3 ' C l l > 

C 2 2 _ C 1 1 C 1 2 ' C 1 1 > e l l _ e 3 3 e 3 1 C 1 3 ' C l l ' 

e\2 ~ e3\ _ e 3 1 C 1 2 ' C l l > £U = £33 +e3l ' CW 

(2.3.55) 

(2.3.56) 

2.3.4 Radial vibration of a circular ceramic disk 

Consider a circular disk of a piezoelectric ceramic poled in 
the thickness direction positioned in a coordinate system as shown in 
Figure 2.3.4. The faces of the disk are traction-free and are completely 
coated with electrodes. A voltage Vexp(icof) is applied across the 
electrodes. We consider axi-symmetric radial vibrations [3]. 
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2h x2 

Figure 2.3.4. A circular ceramic plate with thickness poling. 

The plate electric potentials for the applied voltage are 

0(O>=O, <j>{V) =— exp(icot). 
2h 

Introduce the following vector notation: 

V = i,S,+i2a2, V2=d2 + d2
2. 

(2.3.57) 

(2.3.58) 

Then Equation (2.3.40) can be written into coordinate independent form 
as 

(c/J -c,p
2)W2u (0) +(c/; + c/2)/?V(V-u(0)) 

+ 2hep^<j>{X) + [r31e, + T32e2 ]th = 2phii(0). 

In polar coordinates 

(2.3.59) 

( W ° > ) r = a
2«<0) iew<°> ui0) 

dr2 - + — r dr 

[V(V-u(0))]r = 
d2«<0) 1 du™ ,«» 

(2.3.60) 

dr2 r dr 
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Then for axi-symmetric motions Equation (2.3.59) becomes 

+— = PU. 
(0) 

dr2 r dr 

The relevant resultants are 

TP-VtcZsP+c&SW-eZEM) 

= 2h(c(xiif} +c[2u
(°) /r) + e&Vexp(ia*), 

Df] = 2he& (u?) + 40) /r)-ef3V exp(/a*). 

For steady state motions, Equation (2.3.61) reduces to 

(2.3.61) 

(2.3.62) 

where 

uf>„+^- + 

2 = <0 

1 ,(°) 0, 

(ypf 
,p\2 

, (yp)=c^lp. 

(2.3.63) 

(2.3.64) 

Equation (2.3.63) can be written as Bessel's equation of order one. For a 
solid disk, the motion at the origin is zero and the general solution is 

u?)=BJx{Zr)extfi(ai), (2.3.65) 

where J\ is the first kind Bessel function of the first order. Equation 
(2.3.65) is subject to the boundary condition 

7-W =0, r = a, 

hence Equation (2.3.66) requires that 

C" dr 
+ cp R^±---ep — 

a 2« -12J 

(2.3.66) 

(2.3.67) 

where, for convenience, the argument of the Bessel function is not 
written. From Equation (2.3.67) B can be expressed in terms of V as 
follows: 

B = 
a -Potfa) c> 2h : 

(2.3.68) 
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where 

dJx{x) 

dx 
= • / „ ( * ) -

Jx{x) 
(2.3.69) 

has been used and 

• c 1 2 / c n , (2.3.70) 

which may be interpreted as a planar Poisson's ratio, since the material is 
isotropic in a plane with a normal along x3. The total charge on the 
electrode at the bottom of the plate is given by 

Q° = li-h
D?)dA=2«\lTh

D(*)rdr- (2-3-71) 

Substitution of Equation (2.3.65) into Equation (2.3.62)2 and then into 
Equation (2.3.71) yields 

Qe = 2mP
xaBJx (£a) - ne^Va212h. 

Hence we obtain for the current that flows to the resonator 

(2.3.72) 

da 
dt 

= 10J\ 

- M 2 
2{kp

xYJx^a) 

(l-ap)Jxtfa)-ZaJ0(Za) 

£p
3na2V 

2h 
(2.3.73) 

where 

/M2 

{K)2=^ 
Fp cp 
fc33cll 

(2.3.74) 

At mechanical resonance, the applied voltage can be zero, and from 
Equation (2.3.67), 

dJ, 

dr a 
(2.3.75) 

Or, at the resonance frequency, the current goes to infinity. This 
condition is determined by setting the square bracketed factor in the 
denominator of Equation (2.3.68) equal to zero. The resulting equation is 
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4aJ0(Za)=1_aPt ( 2 3 ? 6 ) 

which can be brought into the same form as (2.3.75). The antiresonance 
frequency results when the current goes to zero. The resulting equation is 

^ i ^ l - g ' - W . ) 2 - (2-3-77) 

The above results from plate equations are the same as the results in [3,9] 
obtained by directly making approximations in the three-dimensional 
equations. 

2.4 First-Order Theory 

In this section the first-order terms and equations are examined. A 
set of equations governing extension and flexure with shear deformations 
are obtained. These equations are probably the most widely used plate 
equations. The equations are specialized to the cases of ceramic and 
quartz plates. 

2.4.1 Coupled extension, flexure and thickness-shear 

By a first-order theory we mean a theory for coupled extensional 

(uf\ a = 1, 2), flexural (uf^) and thickness-shear (u^) motions of a 

plate. For the electrical behavior of the plate we are interested in what is 

governed by ^(0) and </>m. The approximate displacement and potential 

fields are 

W(SM<0)+*3", (1 )+*32«, (2 ) , 

Although we are mainly interested in u\0) and u^, we have included a 
few additional displacement components in Equation (2.4.1). Among 
these additional displacements, u^ and uf) represent the thickness 
stretch or contraction accompanying extension and flexure due to 
Poisson's effect, and must be included. From Equation (2.2.6) it can be 

seen that u^ together with u\2) and uf] contribute to symmetric 
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thickness-shear deformations S^ and S*p, which may couple to the 
other first-order strains due to anisotropy and should be allowed. The 
two-dimensional plate equations we will obtain are for u^\ uf^ and 

u^ only. Other displacements will be eliminated through stress 
relaxation procedures. Within the approximation in Equation (2.4.1), the 
strains and electric fields in Equations (2.2.5), (2.2.6), (2.2.8) and (2.2.9) 
become: 

sf 0 )=M l<?, s<0) 

" 4 ~ M3,2 + U2 ' 

£?>=-*?>, 

EP=^f\ 

_„(0) 
- M 2 , 2 > 

• " 2 , 2 » 

£f = 

p ( i ) 
•^2 

e(0) _ M(D 

- « ( 0 ) + » y ( 1 ) V(0) - M ( 0 > + M ( ° > 

S3
(1)=2Wf, 

= iij),)+2ii1
(2), S ^ 

-4°), E^=-^\ 

= -4>f, E?=0. 

(2.4.2) 

( 2.4.3) 

(2.4.4) 

(2.4.5) 

Higher order strains S^ are neglected. From Equation (2.2.17)i, fory = 

1, 2, 3 and n = 0, and fory =1 ,2 and n = 1, we obtain 

TZ+Fr=2hpuf\ a,b = 1,2, 

l%+F}°>=Zhpu?\ (2.4.6) 

where we have truncated the right hand side by keeping the 5ooterm onty 
in the summation in the zero-order equations, and the Bu term only in 
the summation in the first-order equations. Equation (2.4.6)i is for 
extension, Equation (2.4.6)2 is for flexure, and Equation (2.4.6)3 is for 
thickness-shear. The electrostatic equations are the same as those in the 
zero-order theory in the previous section. We have, for an unelectroded 
plate: 
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Dn+o^=o, 
DV-DM+D<»=O, 

(2.4.7) 

for a symmetrically electroded plate: 

#w -hjm =V2(t), 

for a plate electroded at the upper surface: 

0(O)+/tf(I) =^(0, 

-h(D% + Z)(0)) + Z>£ -Z><0) +Z>(1) =0, 

and for a plate electroded at the lower surface: 

A ( Z ) ( 0 ) + j D ( o ) ) + j D( i)_ j D(o ) + Z )( . )= 0 j 

<P{0)-h</>m =V2(t). 

(2.4.8) 

(2.4.9) 

(2.4.10) 

For plate constitutive relations, we truncate Equation (2.2.12) by 
keeping the B0o and Bn terms only in the summation: 

Tp=2h(cmSJ»-ekyEJ?), 

D^^2HevkSf+svE^), 
(2.4.11) 

1ij ~ ~ \Lijkl°kl ^kij^k h 

(2.4.12) 

0) where SJf* have been neglected. Since S^ contains u^l) and S 

contains u'p and z/,(2), Equations (2.4.11) and (2.4.12) are not yet ready 
to be used for a theory of extension, flexure and thickness-shear. To 
obtain the proper constitutive relations we proceed as follows [13,17]. 
For the zero-order constitutive relations we take the following stress 
relaxation to be approximately true: 

4 0 ) = 0 . (2.4.13) 
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Then, in the manner of the derivation of Equations (2.3.23) through 
(2.3.26), we obtain the relaxed zero-order constitutive relations: 

A(0)=2/Ke,rf+^f), 
(2.4.14) 

where 

Cijkl-Cijk! Cij33C33kl ' C3333> 

ekij - ekij 'ek33C33ij ' C3333> (2.4.15) 

£ij - Eij + emej33 ' C3333 

Since we use a linear function x3u^ as an approximation for the 
fundamental thickness-shear mode in this first-order theory, which is 
approximate in dynamic problems where the fundamental thickness-
shear displacement has a sinusoidal variation through the plate thickness, 
following [13,17], we introduce two shear correction factors Ki and K2 as 
follows. First a two-dimensional electric enthalpy can be defined based 
on Equation (2.4.14). Then we replace the following zero-order strains in 
the two-dimensional enthalpy function: 

0 3 1 —> KlSn , S32 —> K2S32 . 

T(0) 
P 

(2.4.16) 

This modifies cjjkl and eijk into ~c\jkl and e'yk in the zero-order 

constitutive relations. Then Equation (2.4.14) takes the following form: 

2h{c'nS^-e'kpE^), 

The structures of the c'pq and ~e'iq matrices are 

(2.4.17) 

p»y-

'21 

K-,C, 2 M 1 

K,C 1*-51 

V °61 

'12 

'22 

KiC. 2M2 

KiC. l c 5 2 

'62 

0 

0 

0 

fC^Ci 2M4 

IQ'sC-2^24 

0 KxK2C5n 

0 K2CM 

K,C 11'25 

K\K2Ci$ 

K\K\C55 

K,C, 

'16 

'26 

K-yC, 2M6 

K\C l c 5 6 

1C65 C 66 ) 

(2.4.18) 
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F;I= 
«n 
e2i 

h\ 

en 

e22 

e12 

0 

0 

0 

K2eU 

K2eU 

K2e14 

K\e\5 

K\e25 

K\eii 

«16 

^26 

*36_ 

(2.4.19) 

The two correction factors should be determined by requiring the two 
fundamental thickness-shear resonant frequencies obtained from the two-
dimensional plate equations to be equal to the corresponding exact 
frequencies predicted by the three-dimensional equations. With shear 
correction factors thus determined, the two-dimensional plate equations 
and the exact three-dimensional equations yield the same frequencies for 
a particular motion, i.e., the thickness-shear vibration of a plate in the 
two fundamental thickness-shear modes. This is particularly important to 
the analysis of piezoelectric devices operating with thickness-shear 
modes. 

For the first-order constitutive relations, we set [13,17] 

7;(1)=0, 9 = 3,4,5, (2.4.20) 

Then, similar to the derivation of Equations (2.3.17) through (2.3.20), we 
obtain the relaxed first-order constitutive relations: 

Tm = 

D, 0) 

2h3 

2h3 

:(») Oh 
{YnS\l> ~¥krEr\ 

(2.4.21) 

m^ G^SJ"+^}U), 

where 

'CrvCvwCws' r>S~h^>V, 

- e *H- c w c ™» V,W = 3,4,-

?kj = £kj + ekvcvwejw > . A * = 1>2,3. 

/ rs rs *"rv~ VM*" ws ' 

Vks = eks - ekwCw\Cvs , V > W = 3 A5 ' 

- 1 . 

(2.4.22) 
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In summary, in the case of an unelectroded plate, we have obtained 

r ( 0 ) 
1ab,a 

r ( 0 ) 
Ia3,a 

y( l ) 1ab,a 

fl(0) 
a,a 

Dm 
a,a 

+ ^ ( 0 ) 

+ /f> 

r ( 0 ) 

+ J D ( 0 ) 

-Z>< 0 ) 

= 1hpuf, 

= 2hpuf\ 

* 3 

= 0, 

+ JD
(1)=0, 

a,b = 

-pa?.. 

U 

i (2.4.23) 

7f =2/*c^-^£f), 
zf>=2/<erf+^f), 

sf* 

sf 
s, (1) = 
£<°> 

£, ( 1 ) 

DV=^isS<?+<;vEf), 

_ M(0) o(0) _ (0) 
— « j j , 0 2

 — "2,2 » 

- w ( 0 ) + w (1) <7(0) - M (0) + jy ( I ) 9 ( 0 ) 

_ M(l) c(l) _ ,.(1) c(l) _ , .0) . ,.(1) 
~ "l,l ' " 2 — " 2 , 2 ' ° 6 — "1,2 + " 2 , 1 ' 

= -<*f, ^ 0 ) = - ^ , Ef =-/*>, 
= - ^ , £ « = ^ « , £ 3

0 ) =0. 

= 1,2,6, 

- M ( 0 ) + M ( 0 ) 
_ " l , 2 + " 2 , 1 

( 2.4.24) 

(2.4.25) 

With successive substitutions from Equations (2.4.24) and (2.4.25), 

Equations (2.4.23) can be written as seven equations for wf), u?, ^(0) 

and <j>m. At the boundary of a plate with an in-plane unit exterior normal 

n and an in-plane unit tangent s (see Figure 2.2.1), we may prescribe 

7 T or „<»>, T™ or u?\ T™ or uf\ 

& or „ « , r « or „ « , (2.4.26) 

Z)<0) or <*(0), / ) « or ^ > . 
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When electrodes are present the differential equations are fewer, and so 
are the boundary conditions. We note that Equations (2.4.23) through 
(2.4.25) do not contain Sf* and S® (w = 3, 4, 5), and the related 
displacement components u^ and wp^. These strain and displacements 
can be determined approximately from the stress relaxation conditions in 
Equations (2.4.13) and (2.4.20) once the solution to Equation (2.4.23) 
through (2.4.25) has been obtained. 

2.4.2 Flexural and thickness-shear waves 

To examine the basic behavior of the equations obtained, we study 
the special case of an isotropic, elastic plate for which 

[*«]= 

cu 
C12 

c12 

0 

0 

, 0 

cn=X + 

c12 

<hi 

C\2 

0 

0 

0 

2M, 
C\2 ~ "••> 

C44 = ( C 1 1 — 

[e, p]= 

cu)/2 

o, 

cu 

cu 

0 

0 

0 

0 

0 

0 

C44 

0 

0 

0 

0 

0 

0 

C44 

0 

(T 
0 

0 

0 

0 

c 44y 
(2.4.27) 

where X and fi are Lame constants. In this case extension is not coupled 

to flexure and thickness-shear. Consider coupled flexure uf\xltt) and 

thickness-shear in the JCI direction w,(1) (xl, t) . The relevant equations 

reduce to 

(0) .0)1 Du^-2hMK\u^+u\l>) 
2h3 

-pu\ 
(i) 

(2.4.28) 
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where [13] 

D= 2kE
2 , K = KX=K2=-^=. (2.4.29) 

3(l-v2) Vl2 

D is the bending stiffness of the plate. E is Young's modulus, v is 
Poisson's ratio. We look for simple wave solutions 

M,(1) = A, exp i(£x, - cat), 
1 x v ^ (2.4.30) 

«30) = A3 exp /(<fptj - cot), 

where ,4] and A3 are constants. Substitution of Equation (2.4.30) into 
Equation (2.4.28) results in two linear equations for A\ and A3. For 
nontrivial solutions the determinant of the coefficient matrix of the linear 
equations has to vanish. This yields the following equation that 
determines the dispersion relations for coupled flexural and thickness-
shear waves: 

where 

x = 
col 

-4h, 
n2 

Ah2 

n = 

P 

COl (!)„ 

?u = 

)' 

8 

K2 

1 
1 - V 

3Q4 -3 f i 2 -3Q 2 r u X 2 - X2a2 + yuX
4 = 0, (2.4.31) 

(2.4.32) 

X is a dimensionless wave number. £1 is a dimensionless frequency, 
normalized by the exact fundamental thickness-shear frequency co*,. 
There are two branches of dispersion relations. For short waves with a 
small X, the asymptotic expressions of the two dispersion relations are 

Q2^hLX\ flexure, (2.4.33) 

and 

Q2 ~\ + {yn+-)X2, thickness-shear. (2.4.34) 

The two dispersion curves are qualitatively shown in Figure 2.4.1. With 
the correction factor the plate equations predict the exact cutoff 
frequency at Q. = 1. 
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X 

Figure 2.4.1. Dispersion curves for coupled flexural and thickness-shear 
waves. Dotted lines: from plate equations. Solid lines: exact. 

2.4.3 Reduction to classical flexure 

For many applications in which the flexural motion is dominant, the 
Kirchhoff classical theory of flexure without shear deformation is 
sufficient. 

2.4.3.1 Elimination of thickness-shear 

To reduce the above first-order theory for flexure with shear 
deformation to the classical theory of flexure, we take the plate 

thickness-shear strains S$ to vanish [13], and then from Equation 
(2.4.25) 

, ( i) 
-u 

(0) 
3,a 

e( l ) 
^ab -u 

(0) 
3,ab (2.4.35) 

Equation (2.4.35) enables us to eliminate u® in Equation (2.4.25). 
Another approximation we need to make to obtain the classical theory is 
to neglect the rotatory inertia p2h3/3 in Equation (2.4.23)3. Then 
Equation (2.4.23)3 takes the following form: 

1ab,a 13b ^ r b 0. (2.4.36) 
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from which we can solve for TJb
0) and substitute the result into Equation 

(2.4.23)2 to obtain the equation for classical flexure 

r « « + F « + / ^ > = 2 ^ f > . (2.4.37) 

In summary, the equations for extension and classical flexure are: 

TZ+F?>=lhpu¥\ a,b = \,2, 

T$a+Fr=2hpu?\ 

<>+£(0)=o, 

D?1-DP+DV=O, 

(2.4.38) 

T^=2h(c'rsS^-eiE^), r,s = 1,2,6, 

T^=T^.+Fb
m, (2.4.39) 

A0)=^-(^I
(,)+^y)x 

C(0) _ ,.(0) o(0) _ (0) v(0) _ (0) (0) 
° 1 — "1,1 > ° 2 — " 2 , 2 > " 6 — "1,2 + " 2 , 1 » 

e(l) _ _„(0) 

£,(0)=^j0), E^=-^\ E^=-^l\ 

EV=-$\ E?=-4$\ EV=0. 

With successive substitutions from Equations (2.4.39) and (2.4.40), 
Equations (2.4.38) can be written as five equations for u$°\ ^(0) and 

<f>^'. At the boundary of a plate with an in-plane unit exterior normal n 

and an in-plane unit tangent s (see Figure 2.2.1), we may prescribe 

(2.4.40) 
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7 T or „<°>, 7-W or «<»>, 
(2 4 411 

•ln3 + i m , i ° r "3 > i nn ° r «3,« • 

2.4.3.2 Dispersion curves offlexural waves 

The above procedure for reduction to classical flexure is more 
readily seen in the special case of isotropic materials. We begin with the 
following equations from Equation (2.4.28) for coupled flexure and 
thickness-shear: 

2hfiK2 (4% + wft) = 2hpuf), 

2 / 3 (2.4.42) 
Du^-2hMK2(u^+u^)^— pu?\ 

First we set the rotatory inertia to zero in (2.4.42)2. This results in 

Dux% - 2hnK1 (ufx + ux
m ) = 0 . (2.4.43) 

The elimination of 2h(/ju^x + ux
m) from Equations (2.4.43) and 

(2.4.42), yields 

Duj$u = 2hpuf). (2.4.44) 

Next we set the plate shear strain to zero 

uf}+u\l)=0, (2.4.45) 

with which we can express w,(1> in terms of uf^ in Equation (2.4.44) 

-Duf}m=2hpuf>, (2.4.46) 

which is the well-known equation for classical flexure. In Equation 
(2.4.46), letting 

uf)=Gapi(&x-aX), (2.4.47) 
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we obtain the dispersion relation for flexural waves as 

,-?• D
 P* 

2hp 
(2.4.48) 

or 

Q 2 Tu X* (2.4.49) 

which is exactly the asymptotic expression in Equation (2.4.33). 
The dispersion curve determined by Equation (2.4.49) is plotted in 
Figure 2.4.2 in a dotted line, with a qualitative comparison to the result 
of Equation (2.4.31). It can be seen that the dispersion curve from the 
classical theory for flexure, and the flexural branch of the dispersion 
curves from the theory for coupled flexure and thickness-shear, agree for 
short waves at low frequencies. 

Q 

X 

Figure 2.4.2. Dispersion curves for flexure. Dotted line: Classical 
flexure. Solid line: Coupled flexure and thickness-shear. 

2.4.4 Thickness-shear approximation 

In vibrations of a finite plate, flexure and thickness-shear 
deformations are usually coupled, whether the plate is isotropic or 
anisotropic. In piezoelectric devices, thickness-shear vibrations are often 
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used as the operating modes. These modes are dominated by thickness-
shear deformations, with a small coupling to flexure. There is a 
procedure for eliminating the weak coupling to flexure from the 
equations for coupled flexure and thickness-shear to obtain equations for 
the dominating thickness-shear waves only. This procedure is called the 
thickness-shear approximation [27], and is particularly useful in 
analyzing piezoelectric devices. Thickness-shear approximation was 
introduced in the analysis of quartz thickness-shear piezoelectric devices 
[27]. The procedure can be well explained in the case of an isotropic 
plate, which will be presented below. We begin with the equations for 
coupled flexure and thickness-shear (Equation (2.4.28)) 

2hnK2
 (B<5» + « $ ) = Ihpuf, 

2 / 3 (2.4.50) 
Dux% -2hMK2(4°? +uV) = —piiW. 

Let 
«!(1) = Ax exp/(£c, - cot), 

M30) - ^3 eXP K&\ - <*#)• 

Substituting Equation (2.4.51) into Equation (2.4.50)], we obtain 

(2.4.51) 

HK2{-A^2 + Axi$) = -poj2A3. (2.4.52) 

For long waves we drop the term quadratic in t,. For frequencies close to 
the lowest thickness-shear frequency fife we set 

Ah p 

in Equation (2.4.52). Then Equation (2.4.52) becomes 

A3=~4%, (2-4-54) 

which is equivalent to the differential relation 

"f =-y«S). (2-4-55) 
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Substituting Equation (2.4.55) into Equation (2.4.50)2 we arrive at 

2k 
(D + HKL X n - 2h/iKzu\ (i) -2„0) - 2h3 

-P«i 
(i) (2.4.56) 

which is an equation for the thickness-shear displacement w,(1) . In 
Equation (2.4.56), letting 

u[x) = exp /(£:, - cot), (2.4.57) 

we obtain 

G.2=\ + (9n+hx2, (2.4.58) 

which is exactly the asymptotic expression in Equation (2.4.34). The 
dispersion curve determined by Equation (2.4.58) is plotted in Figure 
2.4.3 in a dotted line, with a qualitative comparison to the result of 
Equation (2.4.34). It can be seen that the dispersion relation of the 
equation with the thickness-shear approximation and the thickness-shear 
branch from the theory for coupled flexure and thickness-shear agree for 
short waves with frequencies near £ 2 = 1 . Note that in Figure 2.4.3 we 
have also included the case of imaginary wave numbers. The complex 
branch shows that the thickness-shear approximation is good near £2=1. 
Its low frequency behavior is not accurate. 

I m ( ^ Re(£) 

Figure 2.4.3. Dispersion curves for thickness-shear and flexure. The 
dotted line represents the thickness-shear approximation. The solid line is 

the coupled flexure and thickness-shear. 
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2.4.5 Equations for ceramic plates 

We consider two cases of ceramic plates with thickness and in-plane 
poling, respectively. 

2.4.5.1 Thickness poling 

First consider a ceramic plate poled in the thickness direction (see 
Figure 2.4.4). 

X3 

f 2h * i 

Figure 2.4.4. A ceramic plate with thickness poling. 

From the material matrices in Equations (2.3.35) and (2.3.42) through 
(2.3.44), the constitutive relations take the following form: 

T<?> = 2h{cnu™+cnu™-e^), 

'22 = 2"(C12M1,1 +C11M2,2 

71?)=2*c66(«S>+ii<5X 

T™ =2*(c12n<°> + c n t $ - e r f * ) , (2.4.59) 

.(0) 0 > ) . , f d h rWi r ^ = 2 M ^ 4 4 « j + C ) - ^ 1 5 ^ r ] ( 2.4.60) 

(0) j . „ 0 ) i r(Oi Dr=2/ lK 5«+^)+^^r] (2.4.61) 

DW=2h(e31u%+e^), (2.4.62) 
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r1?>=|A3(cI1«g>+c12iigx 

4° =\h\cX24J + cni/$), (2.4.63) 

^=f^66(^+^), 

Substitution of the above into the equations of motion and charge gives 
the equations for extension: 

C11M1,11 + C66M1,22 + ( C 1 2 + C 6 6 ) M 2 , 2 1 + e 31^ , l 

in 

+ J_/r(0)-/7w(0) 
+ r2 - pu2 , 

in 

flexure: 

thickness-shear: 

C11M1,11 + C 6 6 M 1 , 2 2 + ( C 1 2 + C 6 6 ) M 2 , 2 1 

- 3/rVc44 (Ml
(1) + «3

(y) - 3h-2ice^f) 

C66M2,11 + C 1 1 M 2 , 2 2 + ( C 1 2 + C 6 6 ) M 1 , 1 2 

- 3/f Vc 4 4 {uf + i/g) - 3h"2Kexs(t>[ 

+ — Fm-rnim 

,(») 

(2.4.65) 

K2C<M),a +U2>^5*S + i F 3 ( 0 ) = Pfi<°>, (2.4.66) 
2« 

(2.4.67) 
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and electrostatics: 

(2.4.68) 
-s?xC +3h~%^ -3h-*e3lu% + - L i ) 0 ) = 0 . 

The thickness-shear approximation of a ceramic plate is often used 
for device modeling [28]. The weak flexural deformation accompanying 
thickness-shear is eliminated as follows [28], which simplifies the 
equations. We consider the case when there are no surface loads. This 
means that the major surfaces of the plate are traction-free, unelectroded 
and are without surface free charge. From Equations (2.4.66) and 
(2.4.68)i, we obtain, by eliminating 0(o), 

* 2 ( c „ + ^ X « 3 ^ + « . 0 i ) = / * j 0 ) . (2-4.69) 

Consider the following wave solution: 

"i0) = A, expi(£nx„ + cot), 
3 3 F V*„ a h (2.4.70) 

«*° =AGXPi(^axa+cot), 

where At are constants. Substitution of Equation (2.4.70) into Equation 
(2.4.69) results in: 

K2{c„+^X-MaSa+Aai$a) = -p<o1A3 . (2.4.71) 

We are interested in long waves with small wave numbers £,. The term 
quadratic in £, in the above equation can be dropped. Also, since for long 
thickness-shear waves the frequency CO is very close to the exact pure 
thickness-shear frequency cox of an infinite plate, we make the following 
substitution in Equation (2.4.71): 

co^colJj^L, (2.4.72) 
ph 
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where <o„ is determined from Equation (2.4.67)i by dropping all x\ and 
x2 dependence as well as the surface load. The approximate version of 
Equation (2.4.71) is then 

A = -4-0 + -^-MaK, (2-4-73) 
3 cAAsn 

which is equivalent to the differential relation 

« 3 W = - y 0 + *,25)«2, (2A74) 

where we have denoted 

/ f c , 2
5 =-^ - . (2.4.75) 
C44fll 

Substituting Equation (2.4.74) into Equations (2.4.67) and (2.4.68)b 

neglecting the third derivatives of ua
m under the long wave 

approximation, we obtain the following equations under the thickness-
shear approximation: 

ClVftl +C66"U2 +C,>2!l2 -Pat?? -^h^KB^ = fM®, 

C(i6H2% + cnu%2 + cnu^}2 - pulu® - 3h-2KB^2
0) = puf, (2.4.76) 

-*„#2+«„«« =0, 
where 

Cll — C l l + K " C44 (1 + 1̂5 )' (2.4.77) 
C12 _ C 1 2 + C66 +K c44 0 + *15/' 

Under the thickness-shear approximation, we approximately have 

D^=2KKB15U^+SUE^). { -

2.4.5.2 In-plane poling 

Next consider the case of a ceramic plate with in-plane poling in the 
JCI direction (see Figure 2.4.5). 
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Xi 

2/i * i 

Figure 2.4.5. A ceramic plate with in-plane poling. 

From the material matrices in Equations (2.3.53) through (2.3.55) and 
(2.3.46), the constitutive relations take the following form: 

T^=2h(cuu$+c22u?l-enE^), 

T2f=2hK2
2c66(u%+u?\ 

T^=2h[K?c<M°l +u?)-Kle15E?)], 

r/2°)^2Mc44(M<°2
)
+^)-e15JBf], 

(2.4.79) 

A(0) =2h(euuW + el2u^+euE^), 

Z)f =2h[exM
Ql^J) + snEf\ 

Df=2h[KleX5{ufl+uV) + snE^l 

(2.4.80) 

(2.4.81) 
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2h3 

DP^tfiuSV+enEJP), (2.4.82) 

nd) _ M_/- Em 

UZ - - ^ 3 3 ^ 3 • 

Substitution of the above into the equations of motion and charge gives 
the equations of extension: 

C11M1,11 +C44M1,22 + ( C 1 2 +C44)M2,21 

2h 

(C12 +" c44 )M1,12 +C44M2,11 +C22M2,22 

In 

flexure: 

thickness-shear: 

(2.4.83) 

K\ c44 (M3,ll + Ml,l ) + K2 C66 (M3,22 + M2,2 ) 

1 (2.4.84) 

In 

WW +C44«1% + ( T l 2 +C44)"2! 21 + ^ 1 1 ^ U 

+ ej5$> -3r2[/r,2c44(<1
) + M l

( V ^ 1 5 / 1 ) ] 

+ -l-FU=pu?\ (2.4.85) 
in 

(Tl2 + C 4 4 ) " U 2 +C44"2!ll + ^ 2 2 ^ 2 2 + (g15 + ^ 1 2 ¥,12 

- 3 r V 2
2 c 6 6 « 2 ) + M f ) + - ^ ^ = ^ , 
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and electrostatics: 

(0) 
«ll«l,li +e15"l,22 +(£12 + e i s M . 1 2 

1 
F s(0)

 -F dm + — nm 

,(') _•_„ „(•) ±(tl, _•_„ \„o) _r /*(!)_£• Am y/uu\>x +ex%u\{2 +(y/n + eX5)u2
i>n -Cu^ii - * i i $ 2 

- 3 ^ [ / r i e , 5 « / + t t W ) - e i I ^ ] + 
Itf 

(2.4.86) 

2.4.6 Shear correction factors for ceramics plates 

In order to determine the shear correction factors, we solve the same 
problem of thickness-shear vibrations of a ceramic plate by two 
procedures using the three-dimensional equations and the two-
dimensional equations, respectively, and match the results. We consider 
two cases of ceramic plates with thickness and in-plane poling, 
respectively. 

2.4.6.1 Thickness poling 

First consider the case of an infinite, unelectroded plate with the 
electric polarization in the thickness direction x3 (see Figure 2.4.6). 

x3 

t Ih xi 

Figure 2.4.6. A ceramic plate with thickness poling. 

The plate has traction-free and vanishing normal electric displacement 
boundary conditions at JC3 = ±h. The two edges at x\ = +°° are electrically 
shorted. As an exercise, we use the constitutive relations in terms of the 
following matrices: 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



Piezoelectric Plates 79 

'12 "13 

'12 11 J13 

M3 J13 '33 

0 0 

0 0 

0 0 

0 ^ 

0 

0 

44 0 0 0 * 

0 0 0 0 

0 0 0 0 

0 0 

f 0 0 

0 0 

V^31 ^31 

0 

0 £/, 

' 33 

0 </15 (fi 
0 0 

5 44 

r„r 

5 66 7 

0 0 

0 0 

0 0 £ 33 

(2.4.87) 

where *66 = 1{s\\-sn )• We look for solutions in the following form: 

Ux = Wj (X3 , 0 , M2
 = M 3 = 0, ^ = 0 , (2.4.88) 

which lead to 

i J i — U i — I J T 

^ = £ 2 = £ 3 = 0 , 

S4=S6=0, S5 *1,3> 

T^T2=T3^T4=T6=0, T5=—uh 3 ' (2.4.89) 
3 44 

£>!=—w1 3 , Z>2=JD3=0. 

The equation and boundary conditions to be satisfied are 

1 
-tt,33 = pux, •h<x3 <h, 

3 44 

r 3 , = 
1 

(2.4.90) 
M, 3 = 0, X3 = ±/z, 

344 

which allow the following simple solution for the lowest thickness-shear 
mode 

• mT, ,• - 2 7 It 

w,=sin exp(jfttf), co =coK=—z 
2c 4hlpsu 

(2.4.91) 
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Note that the solution is not pure elastic because of the following 
nontrivial electric displacement component: 

D, = ^S5 = ^LiLcos^LexpO-fl*), (2.4.92) 
^44 ^44 ^C ^ 

which is responsible for the current flowing through the shorted edges at 
x\ = ±°°. To determine the correction factor K, we also consider the above 
thickness-shear mode from the plate theory. From Equation (2.4.67)i we 
have, with 3, = d2 = 0, (jf0) = 0, and <j>m = 0, 

h2s 
,(l) _ ~;( l ) pii\l>, (2.4.93) 

44 

which implies that 

ft>2= 3*~ . (2.4.94) 
ph s 44 

Comparing the frequencies in Equations (2.4.91) and (2.4.94), we 
determine the correction factor as 

K2= — . (2.4.95) 
12 

The above solution is for the case when the two edges of the plate at JCJ = 
±oo are shorted. If the two ends of the plate are open (which implies that 
Di(0) vanishes but E\-0) survives in the plate theory), then from the plate 
equations we have 

a £ » 2 *\ . 2 , » * . 2 5 = - ^ - . (2-4-96) 

2.4.6.2 In-plane poling 

Next consider the case of a ceramic plate with in-plane poling in the 
xi direction (see Figure 2.4.7). The plate is unelectroded at its major 
surfaces. 
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*3 

2h x\ 

Figure 2.4.7. A ceramic plate with in-plane poling. 

For ceramics poled in the x\ direction, we have [9] 

'33 

'13 

'13 

0 

0 

0 

5 1 2 

0 

0 

0 

J12 

*11 

0 

0 

0 
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0 

0 

0 

0 

0 

0 

0 

0 

S44 

0 

0 

0 

0 

0 

S44 7 

(d. 33 

0 

0 

"31 

0 
"31 

0 

0 

0 

0 

0 

0 

0 

dl5 

*15 

6 33 

0 

0 

0 

0 (2.4.97) 

We look for 

ux=ux{x3,t), u2=u3=0, $ = 0(x3,t), 

which leads to 

5", - iS"2 - S3 

Ex=E2=0, - 0 . 3 > 

(2.4.98) 

(2.4.99) 

T\ = T2 = T3 = T4 = ^6 = °> ^5 = ("1,3 - ^ 1 5 ^ 3 )> 
'44 

Dx=D2=0, I>3 = — uX3 + eT
33 (1 - kX5 )E3. 

'44 

(2.4.100) 
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The equation and boundary conditions to be satisfied are 

5—Mi33=P"i> -h<x,<h, 

(2.4.101) 

^31 = T~U\ 3 = 0 ' Xi= ± n , 

5 4 4 ( l -^ 2
5 ) U 

which allow the following simple solution for the lowest thickness-shear 
mode 

. I O C , . . . 
w, =sin—-exp(*6#), 

2h 
2 (2.4.102) 

2 2 11 

4^44(l-4) 
The corresponding plate solution can be found from Equations (2.4.85)i 
and (2.4.86)2 as 

3K-2 

co2 - — ! —. (2.4.103) 
ph2s44(l-k?5) 

Comparing Equations (2.4.102) and (2.4.103) we obtain 

If the plate is electroded at x^ = ±h and the electrodes are shorted, from 
the plate equations we have 

n 
2 

< » > — — - . (2.4.105) 
4ph s 44 

2.4.7 Thickness-shear vibration of an inhomogeneous ceramic plate 

As an application of the equations obtained, we analyze thickness-
shear vibrations of an inhomogeneous ceramic plate with thickness 
poling (see Figure 2.4.8) [25]. The thick lines represent electrodes. The 
analysis is also valid for a plate of 6mm crystals with the six-fold axis 
along the plate thickness. This structure has various applications in 
piezoelectric devices operating with thickness-shear modes. When a » 
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h = max{h\,h2}, i.e., thin plates, the flexural deformation accompanying 
thickness-shear can be essentially avoided by properly choosing the 
aspect ratios of ct/h and b/h. Therefore, in the following we neglect the 
coupling to flexure and consider thickness-shear vibrations. 

-v{t). 

?/?•, + 
Arii t 

a 
V y 

Pf 2/?, 
< ' 

vX3 

a 

V 

i 
i 

s 

V{t) 

/ 
• 
T 

X\ 

* 

y<r 
2b 

Figure 2.4.8. An inhomogeneous ceramic plate with thickness poling. 

For a plate with the material orientation and electrode configuration as 
shown in Figure 2.4.8, the thickness-shear deformation is coupled to the 
electric field E\. Hence the displacement and potential fields can be 
approximated by 

Wj = x^u'p {xx,t\ u2 = w3 = 0, 
(2.4.106) 

Under Equation (2.4.106), in an electroded region, we have ^(0) = 
constant. We are interested in free vibration modes when the two 
electrodes in the figure are either shorted or open, i.e., V= 0 or .D,(0) = 0 . 
We discuss these two cases separately below. 

2.4.7.1 Shorted electrodes 

In the case of shorted electrodes, from Equations (2.4.67)i and 
(2.4.68)i, we have the following equations for free vibrations: 
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ciXft - 3VVc4 4"i ( 1 ) - 3V 2 « 1 5 ^ 0 ) = pw,(1), | x, |< a, 

- su&fi + KB15U® - 0 , \xx \< a, 

cuu\x}\ -3h22K2cHu{l) = pu\x), a <| xx \<b, 

M,(,) (±a" ) = w,(1) (+a+), (2.4.107) 

«1
(i)(±a-) = «1

(i)(±a+), 

^ ( 0 ) ( ± f l - ) = 0, 

u?\±b) = 0, 

where K2 = n2 111. Note that Equation (2.4.107)5 is of an approximate 
nature. In Equation (2.4.107) we directly neglected the coupling to 
flexure and did not use the thickness-shear approximation to eliminate 
flexure. Consider time-harmonic motions with a frequency co. Then 
Equations (2.4.107)i>3 can be written as 

?„«,<?, + p(co2 - co2 )Ml
(,) - 3V2**W,(,0) =0, I x, |< a, 

cuu^ + p(co2 - a>\ )w,(1) =0, a<\ xx |< b, 
(2.4.108) 

where 

r2 _ 3K c44 _ K C44 „ 2 _ 3 y C44 ?T ^44 /-^ ,i i r . 0 \ 

^ = ^ J 7 " - 7 I I T ' ^ - - ^ — - - 7 2 - (2.4.109) 
2 _ -»v ^44 _ " ^44 2 _ - , / v M 4 _ " M 4 

are the pure thickness-shear frequencies of a plate of thickness 2h\ or 2/Z2 
when there is no piezoelectric stiffening due to E\. Equation (2.4.107)2 
can be integrated to give 

^ ( 0 ) = ^ i L t t ( i ) + C i > \Xx\<a, (2.4.110) 

where C\ is an integration constant. Substitution of Equation (2.4.110) 
into Equation (2.4.108)i yields 

cuiift + p{co2 -c5x
2)u^ - ^ - C , =0, I xx |< a , (2.4.111) 
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where 

2 

ax
2 = a] (1 + kx\), /fc2

5 = — i 2 - . (2.4.112) 
£11C44 

^ is the pure thickness-shear frequency of a plate of thickness 2h\ 
when there is piezoelectric stiffening due to E\. The general solutions to 
Equation (2.4.111) and Equation (2.4.108)2 are 

wP = C3 cosh axx + C4 sinh axx+yCx, \xx\< a, 

ux
m = C5 cosfixx + C6 sin flxx, a<xx< b, (2.4.113) 

wP = C7 cos /3xx + Cg sin /2c,, - 6 < JCJ < -a , 

where C3 through C6 are integration constants, and 

oc — , 

p2=P(fi?_-*bt ( 2 4 1 1 4 ) 

pia)2-^)^' 

With Equation (2.4.113)i, Equation (2.4.110) can be integrated once 
more to yield 

( 1 i A 

(2.4.115) 
KB t 1 I 

^(0) _ — n Q —sinh axx + C4 —coshaxx + yCxx 
£xx \ a a 

+ Cxxx +C2, \xx \<a, 

where C2 is another integration constant. Substitution of Equations 
(2.4.113) and (2.4.115) into the boundary and continuity conditions in 
Equation (2.4.107) results in a system of homogeneous equations for C\ 
through C6. For nontrivial solutions the determinant of the coefficient 
matrix has to vanish, which determines the eigenvalues or resonant 
frequencies. Mode shapes are determined by the eigenvectors. Because 
of the symmetry in Figure 2.4.8, the modes can be separated into two 
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groups. One is called symmetric and the other anti-symmetric in xx. In 
applications the symmetric modes when M,(1) is an even function of JCJ are 
useful, especially the lowest one. For these modes we let 

C2 — C4 — U, C7 — C5 , Cg -c, (2.4.116) 

Then from the continuity and boundary conditions at a and b, we obtain 
the following equations for C\, C3, C5 and C6: 

C3 cosh aa + yCx =C5 cos /3a + C6 sin /3a, 

C3a sinh oca = -C5/3 sin Pa + C6/? cos/far, 

KB 15 C3 —sinhaa + ̂ a I + Cxa = 0, 
(2.4.117) 

C5cos/% + C6sin/% = 0. 

The frequency equation is 

7xe15 tanhaa > 
^ 1 + yivu 

aas, (2.4.118) 

• aa tan fl(b - a)tanh aa 1 + YKBli 

MI y 
= 0. 

First consider a plate of uniform thickness ( hx =h2). In this case 

cox > a>2. As a numerical example, we consider the case of hx = h2 = 1 
mm, a = 22 mm, b = 30 mm, and the electrodes are shorted. Cadmium 
Sulfide (CdS) is used in the calculation. The material constants are given 

in Appendix 2. For a>2 < a < o5x , the modes are hyperbolic (or 
exponential) in the unelectroded region and sinusoidal in the electroded 
region. The first mode of ux

m is plotted in Figure 2.4.9. The vibration is 
essentially in the electroded region; once it enters the unelectroded 
region it decays rapidly. The cause of this type of behavior is that the 
piezoelectric stiffening effect in the unelectroded central region makes 

a>x >a>2. The corresponding ^(0) is shown in Figure 2.4.10. 
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Figure 2.4.9. w,(1) of the first thickness-shear mode in (co2,a)x ) when 

hx = h2 (shorted electrodes). 

-0.03 

•1.5 J-

0.03 

Figure 2.4.10. ^(0) of the first thickness-shear mode in {co2,cox ) when 

hx = h2 (shorted electrodes). 
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Next consider a plate of non-uniform thickness (hx>h2 ), still with 

shorted electrodes. When hx is different from h2, the case of \ > h2 is 

more useful in applications. In this case, when \ is sufficiently larger 

than h2, we have Wx < a>2 • As an example, we consider the case of 

hx = 2h2 = 2 mm, a = 22 mm, and b = 30 mm so that cox <o)2. For 

ftjj <a><co2, the modes are sinusoidal in the unelectroded central region 
and exponential in the electroded region. The first three symmetric 
modes of w,1' are plotted in Figure 2.4.11. They are the sum of a cosine 
function and a constant in the central region and decay rapidly in the 
electroded region. Therefore the vibration is trapped in the central region. 
Near the edge of the plate there is essentially no vibration. This 
important phenomenon is called energy trapping [27,29,30] and is very 
useful in device applications. When the vibration is trapped to the center, 
mounting the device at the edge will not affect the vibration. Energy 

First mode 
Second mode 

-0.030 -0.020 

Third mode 

0.020 0.030 

Figure 2.4.11. ux
m of the first three thickness-shear modes in (<y, ,a>2) 

when hx = 2h2 (shorted electrodes). 
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First mode 

-0.030 

Second mode 

1.5 Td<® 
Third mode 

0.030 

Figure 2.4.12. ^ ' ofthe first three thickness-shear modes in (&>, ,co2) 

when hx = 2h2 (shorted electrodes). 

trapping can be due to either the mass effect in a plate with nonuniform 
thickness or piezoelectric stiffening. In the structure discussed here, the 
piezoelectric stiffening in the central region is against energy trapping in 
the central region. A thicker central region is needed to overcome the 
piezoelectric stiffening effect and produce energy trapping in the central 

region. The corresponding ^(0) is shown in Figure 2.4.12. 

2.4.7.2 Open electrodes 

Still consider the case of hx = 2h2 = 2 mm, a = 22 mm, and 6 = 30 

mm so that ~cox <a>2 . If the two electrodes are open, then Z),(0) = 0 

which implies that C, = 0. In this case the boundary conditions on ^ (0), 
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namely (2.4.107)6 and (2.4.117)3, should be dropped. The frequency 
equation takes the following form: 

fi{l - tanh Pa tanh fib) + a tan cra(tanh /3a - tanh fib) = 0. (2.4.119) 

The first three symmetric modes of w,0' are plotted in Figure 2.4.13. 
They are a cosine function only without C\ (which is zero) in the central 
region and decay rapidly in the electroded region. Compared to the 
modes in Figure 2.4.11, the modes in Figure 2.4.13 are not trapped as 
strongly. This is because for the case in Figure 2.4.13 the open electrodes 
allow stronger electric fields in the central region, which cause more 
piezoelectric stiffening there against energy trapping. The corresponding 

^(0) is shown in Figure 2.4.14. The two electrodes now have a differ­
ence in their electric potentials. 

First mode 

-0.03 

Second mode 

Third mode 

Figure 2.4.13. w,(l) of the first three thickness-shear modes in (a>x ,a>2) 

when hx = 2h2 (open electrodes). 
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First mode 1.5 T <j> TWrdmode 

Second mode 

*i(m) 

0.03 

-1.5 -L 

Figure 2.4.14. ^(0) of the first three thickness-shear modes in (o, ,co2) 

when /z, = 2/z2 (open electrodes). 

2.4.8 A ceramic plate piezoelectric gyroscope 

Consider a rectangular ceramic plate poled in the thickness direction 
as shown in Figure 2.4.15 [28]. 

Figure 2.4.15. A ceramic plate piezoelectric gyroscope. 
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The plate can vibrate at the fundamental thickness-shear modes in both 
the x\ and the x2 directions. For a ceramic plate poled in the thickness 
direction ;c3, these thickness-shear modes can be excited or detected 
electrically by lateral electrodes on the sides at jq = ±a or x2 = ±b. 
Suppose a thickness-shear vibration u\ in the JCI direction is excited by a 
time-harmonic voltage 2Viexp(icot) applied across a pair of electrodes at 
x\ = ±a. If the plate is rotating about its normal with an angular rate Q, 
the Coriolis force F2 will excite a thickness-shear motion u2 in the x2 

direction. This secondary thickness-shear will produce a voltage 
2V2exp(icot) across a pair of electrodes at x2 = ±b. V2 can be shown to be 
proportional Q. and therefore can be used to detect O. 

We are going to use an approximate procedure to analyze the 
gyroscope, which can be considered as a perturbation procedure [28]. For 
the thickness-shear motion excited by V\, the main motion is «i(1). We 
approximately have the following one-dimensional problem from 
Equation (2.4.76): 

c > $ " 3C-VC4 4M, ( 1 ) - 3c-2KBl5</>f) = pu\x), I *, |< a, 

^ 1 5 M U - £ ufiu = °» I X\ \< a> 

r/3
0) = 2C{K2C^U\X) + KBu(pf ) - 0, xx = ±a, 

(j>{0) = ±VX sin at, xx = ±a. 

(2.4.120) 

As an approximation, we neglect the piezoelectric coupling term to ux
m 

in the electrostatic equation in Equation (2.4.120)2. This gives an 
approximate solution of the driving electric potential as 

^(o) ^ ^ s i n ^ ^ - ^ s i n - ^ s i n f i r f . (2.4.121) 
a n 2a 

In Equation (2.4.121) we have approximated a linear function of x\ over 
[-a,a] by a sine function. It can be considered as a one-term 
approximation by Fourier series. This is sufficient for a qualitative study. 
Substituting Equation (2.4.121) into Equation (2.4.120)i, we then obtain 
the following expression for ux

m: 

/,(1) = Bx cos—^-sincot, (2.4.122) 
2a 
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where 

B}=
 2 V J . 2

 e ^ ' 2
a , c o l = ^ . (2.4.123) 

c44a 

With M!(1) known, we have the displacement field 

Wj = JC3M,(1) = Blx3 cos—-sin ^ ? (2.4.124) 
2a 

which leads to a Coriolis force field 

/ = -2Q?3 x «,?, = ^ Q M , ^ (2.4.125) 

or 

f2 - -ICicoB^ cos—Lcosftrf 
2a 

4 TEC 

s £2*05,JC3 cos erf s -2Q<aZ?,Jc3 cos—-cos&rf, 
n lb 

(2.4.126) 

where we have approximated a cosine function over [-a, a] by a constant, 
and similarly a constant over [-b, b] by a cosine function. With -F2 we 
calculate the plate resultant 

n\ F 1c TCX-, 
Fi: = x3/jf2dx3^ p2QcoB{ cos-^-coscot. (2.4.127) 

J-c 3 26 
Then the boundary value problem for the thickness-shear in the x2 

direction can be written as 

^11^2 22 - ^ ^ ^44^2 

-3c-2Kex$</>f+^jF^=pu^, \x2\<b, 
2c 

^is"^] - *ii#a = °> I *2 l< *» (2.4.128) 

r2
(
3
0) = 2c(^2C44Mf + KBl5(/)f ) = 0, JC2 = ±b 

<j>m = ±V2smwt, x2=±b, 

Df = 2C(KBISU? - sn<l>f) = 0, x2 = ±b. 
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In Equation (2.4.128) where V2 is unknown, we need some circuit 
condition joining the electrodes at x2 = ±b to determine V2. We consider 
the simple case of open circuit in which D^ or the charge, and hence the 
current on the electrodes, vanishes. As an approximation, we neglect the 
piezoelectric coupling term to 0(o) in Equation (2.4.128)]. Then, under the 
Coriolis force F-r*, we obtain 

,0) TJX-, 

B1 cos—- cos cot, 
2 2b 

where 

B2=-
2QOJ 

co2-col{\ + ^ ) 
c^b 

•Bx. 

With u2
m known, from Equation (2.4.128)2, we obtain 

where 

i (0} * • 70-7 71 . Xj 
<bK ' = A, sin—-coscot s — A - , —^coscot, v 2 2b 8 2 b 

A.=-^B, 
Sexx 

(2.4.129) 

(2.4.130) 

(2.4.131) 

(2.4.132) 

The mechanical boundary conditions and the open circuit condition in 
Equation (2.3.128) are satisfied. The electric boundary condition 
(2.4.128)4 gives the output voltage 

v2=r\x2^b) 

TZ be 15 

8V3f 

2Q.CO 

cuc 
co •®«,(i + — T T ) 

2V3 

c«b< 

eX5Vx/a 

c44a 
pc 

(2.4.133) 

cos cot, 
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or, for voltage sensitivity 

r,n 
2k2-

a 
CD 

c44b 

a>„ 

co2-a>l(\ + ^ ) 
c44a 

cos cot. 

(2.4.134) 

In Equation (2.4.133), the three pairs of brackets on the right hand side 
represent, from right to left, respectively, the driving of the thickness-
shear motion in the x\ direction by the applied voltage V\, the driving of 
the thickness-shear motion in the X2 direction by the Coriolis force, and 
the sensing of the thickness-shear motion in the X2 direction. The roles of 
various material constants and geometric parameters are clearly 
exhibited. At resonant frequencies, the above expressions become 
singular. From Equation (2.4.134) it can be seen that for large voltage 
sensitivity, the driving frequency and the two resonant frequencies of the 
thickness shear motions in two directions must all be very close (double 
resonance). This implies that a must be very close to b and the plate is 
almost square. When that is the case, we can write 

a>l(l + ̂ -T) = (6) + Aa)1)
2, 

c44a 

c,,c a>l(l + -±-T) = (a> + Aco2)
2, 

cAib 

which implies that 

VXQ. 

'44 

-k2 b CO 

2a (A<y,)(Aft)2) 

(2.4.135) 

(2.4.136) 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



96 Mechanics of Piezoelectric Structures 

2.4.9 Equations for a quartz plate 

Rotated Y-cut quartz exhibits monoclinic symmetry in a coordinate 
system (xlrK2) in and normal to the plane of the plate (see Figure 2.4.16). 

A * 2 

2h 
• > X l 

v 

Figure 2.4.16. A quartz plate and coordinate system. 

2.4.9.1 Equations for a plate with the X2 axis along its normal 

When the normal of the plate is along the x2 axis, the stress 

relaxation T^ = 0 leads to the following relaxed material constants: 

Cijkl -Cijkl ~Cij22C22kl ' C2222 ' 

Ckij = ekij - ek22^22ij / c2222> (2.4.137) 

£'j ~S'J + e'22ej22 ' C2222 • 

Introduction of the shear corrections factors 

S £ > - > r f , Sg>->*,Sg> (2.4.138) 

further modifies the relaxed constants into [17] 

c'm = K?+J_2K
v
k+l_2cm' ( n o t summed), 

e'ky =K?+J_2eklJ, (not summed), (4.2.139) 

ju = cos2 (ijn 12), v = cos2 {kin 12). 

Kilj-2 (o r Kk+i-2) is e ( l u a l t 0 Ki> K* or unity according as /'+/' (or k+I) is 

3, 5, or neither, respectively. Equation (4.2.139) can be represented by 
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PL1 = 

Cll 

0 

Cis 

"r3C14 

^,5 

v,K lC16 

0 

0 

0 

0 

0 

0 

C13 

0 

C33 

K'3C34 

^35 

K\C16 

K-,C 3M4 

/C,C 3"-34 

/C,C 3M5 

-15 

'35 

'55 

K,C _ \ 
16 

K,C 1^36 

R r3K '3C44 K :3C45 X r3K r iC46 

lc36 K\K3CA6 K\C56 K\K\C66 

(2.4.140) 

\e'iqV 
K-,e 3C14 

=21 

'31 0 
'23 

=33 

/r,e 3C24 

K,e-3*=34 

=15 

=25 

=35 

K,e lc16 

K\e lc26 

/c,e lc36 

The first-order plate material constants are defined by 

-co c 
** rr" mr'ws * 

(2.4.141) 

Yrs Crs C rvC vt»C v/s •> r>S ^ P ? 

Vks = eb - C*M.C^C» > v ' w = 2'4>6, (2.4.142) 

S# = £kj + eivCvweyw • 7> * = 1)2,3. 

The equations of the first-order theory take the following form: 

TJ&+F™=lhpuf>, a,b = \,3, 

TZ+F^=2hpiif\ 

1ab,a~12b + r b ~ 

2h3 

•m a) 

z > £ > + / ) ( « > = a, 
id) l(0) D%-D?>+D™=0, id ) - 1 

(2.4.143) 

T(0) =2h(c' S(0) -e' Ei0)) 
1ii An\ciikl°kl ekiirjk h 

l (0) 

'ijkl^kl 

A w =2*g^+* ,£™) , 

kij^k 

&=— {YrSS?-VkrE?), r,s = 1,3,5, 
3 

3 
Aw=^-(^«+^«X 

(2.4.144) 
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S<°> 

s™ 

sf 
EP 

£3
(1) 

_ u (0) o(0) _ (0) — Mj ] , O3 — «3 3 , 

- « 2 , 3 + M 3 ' ° 5 _ " 1 , 3 + M3,1> ° 6 

_ ,.(i) oO) _ „(l) c(l) _ „ 0 ) . „(l) 
_ " U ' ° 3 _ M 3,3> ° 5 - M 1 , 3 + M 3 , 1 ' 

= -^30), ^ ( 0 ) =^f . ^ f ^ - ^ , 
= -<Pf, Ell)=-*$\ E?=0. 

= «£?+«i0) 

(2.4.145) 

With successive substitutions, Equations (2.4.143) can be written as 

seven equations for , ^ ( 0 ) and ^ ( 1 ) . At the boundary of a plate 

with an in-plane unit exterior normal n and an in-plane unit tangent s, we 
may prescribe 

r ( 0 ) 
nn 

nn 

or u 
(0) 

or u 
(i) 

or ^ (0) 

r ( 0 ) 
1 ns 

T® or u 

or wo 

(i) 

(0) r ( 0 ) 
or w 

(0) 

or (/) 

s ' 
(1) 

(2.4.146) 

2.4.9.2 Monoclinic crystals 

For monoclinic crystals, the material tensors cfjkl, eijk and stj are 

given by Equation (2.1.2). Then the zero-order plate material constants 
are found to be 

P;J= 

Cn 

0 

^13 

K"3C14 

0 

, o 

[*;]= 

0 

0 

0 
0 

0 

0 

«ii 
0 

0 

Cl3 

0 

C33 

ff3C34 

0 

0 

0 

0 

0 

g13 

0 

0 

K"3C14 

0 

^3C34 

0 

0 

K"3e]4 

0 

0 

0 

0 

0 

0 

C55 

( ) 

0 

0 

0 

K\C56 

/ f ,C5 6 /C^jCgg^, 

0 
g25 

*35 

0 

" : l e26 

^1^36 . 

? 

(2.4.147) 

(2.4.148) 
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0 0 

where 

0 

0 

C l l _ C l l C12 ' C 2 2 > 

;32 

'23 

'33 

'13 " C 12 C 23 ' C 2 2 ' 

-33 — C33 CyilCyy, C,A—CU
 C\lC2b ' C 22 » 

c44 = c. 44 
C24 ' C22 ' C34 — C34 C32C24 ' C22 ' 

e\l — eU g 1 2 C 1 2 ' C 2 2 ' g13 — g13 e 1 2 C 2 3 ' C 2 2 » 

2 
?14 - g14 e 12 C 24 ' C 2 2 » Ml : £ 1 1 + e 1 2 ' C 2 2 -

The first-order plate material constants are 

where 

Yu ~ cn -

?M3 = C13 ~~ 

Y\\ Yn 0 

Yn Y33 0 

0 0 y55 

gu 0 0 

0 S 22 ^23 

" ?23 ^33 

[^*J: 
Vll ^13 0 

0 0 l//25 

0 0 ¥l5 

r,s = 1,3,5, Ar,7 = 1,2,3, 

C 12 C 44 + C 1 4 C 2 2 ^C12CUCH 

C-,-,C 
- S33 ' v M l 5 3 3 5 1 3 ) ' 

22^44 '24 

C 23 C 12 C 44 + C 3 4 C 1 4 C 2 2 C 23 C 14 C 24 C 34 C 12 C 24 

^22^44 ^ 24 

5 ] 3 / ( 5 n 5 3 3 S 1 3 ) , 

^33 

^55 

^ 3 3 -

2 2 
C23C44 + C34C22 ' -^C23C3AC24 

C22C44 C 

• su /(sns33
 su)> 

24 

: C55 C56 ' C 66 — 1 ' 5 5 5 ' 

(2.4.149) 

(2.4.150) 

(2.4.151) 

(2.4.152) 

(2.4.153) 
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_ e12VC12C44 C 1 4 C 2 4 ) + g14 (C14C22 C12C2A) 
H I ~eU ^~2 

C22C44 ~ C 2 4 

= duyu+duyu, 

... _„ e12(C32C44 ~ C 3 4 C 2 4 ) + e14VC34C22 ~ C 3 2 C 2 4 ) ,« . u ,N 

r i 3 _ e 1 3 2 ( / . 4 . 1 3 4 ) 

C22C44 ~ C 2 4 

= d\\Y\l + ^13^33» 

^ 2 5 ~ g 2 5 — g26C56 ' C 6 6 ' 

^ 3 5 = g 3 6 - e 3 6 C 5 6 ' C66 = " 3 5 / 5 5 ' 

_ ^12C44 + e14C22 2e1 2e1 4C24 
S»II _ * l l + 

C22C44 C24 

2 
C22 =£22 +g26 /c66> (2.4.155) 

«3 = £V> + e26g36 ' C66 > 

^ 3 3 = £ 3 3 + e 3 6 / c 6 6 . 

The constitutive relations are 

Tr = 2h(cuS^ +c135<°> +* ,c I 4 Sf - e „ J f >), 

rW =2/Kc1351
(0) +c 3 3 ^ 0 ) + ^ c 3 4 5 f - e 1 3 ^ 0 ) ) , 

r4
(0) = 2/Z(K3C14S,(0) + K3C34S3

(0) + *r3
2c44S<0) -K3e14El0)), (2.4.156) 

7 f > = 2 / ^ ^ + K 1 C 5 6 ^ > -e25E^ -e35E^), 

T^ =2h(Klc56S^ +^c6X
0) ~^e26E^ -Kle36EP), 

A(0) =2//(eu51
(0) + e13S3

(0) +K3euS\0) +enE^), 

D^ = 2h{e25Sf) + Kxe2()SfUe22E^ +s23E^\ (2.4.157) 

A(0) = 2h(e35Sr) + r , ^ + **#«> + ^ X 
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7 f =^-(VuSll) +7^l) -¥nE\x)\ (2.4.158) 

D^=^(WnS^+¥uSfU^nEn 

The equations of motion and charge take the following form: 

C11M1,11 + C55M1,33 + (*"lC56 + /£ -3C14)M2,13 + (C13 "•" C55 )M3,31 

+ cii^ff + e35j<g + K3CU4} + KXC56U$ (2.4.160) 

2« 

( f flC56 +" r3C14)M l ,13 +K\ C66M2,11 + ^ 3 C44W2,33 

+ ^Cs6«3?n +^3C34"3033 + (*1«36 + K3 «14 M i ? (2.4.161) 

+ r 2 c M ( 1 ) + K - 2 C w ( 1 ) + * - e M( 1 )+JLj r ( ° ) - ™ ( 0 ) 

2« 

(C5 5 + C 1 3 ) M 1 1 3 + ^ i C 5 6 M 2 j l l + *3C34M2,33 + C55M3,11 + C33M3,33 

+ (e35 + e13 #g> + J C ^ I I } ? + i ^ i / g (2.4.162) 

+ e 2 5 t f ) + ^ 3 ( 0 ) = ^ ° ) , 2« 
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e l l M l , l l + e 1 5 M l , 3 3 +\K\e16 + K3e\4 )M2,13 + (^13 + e 3 5 )M3,31 

+ Kxe,6uf} + K3euu™ - enj$ + e ^ (2.4.163) 

_ f f ^ ' ) + _ L Z ) ( 0 ) = o ) 
23 V,3 2 ^ 

rn"ui +yS5«u3 +(/i3 +r55)"3!3i +^n^.iV +^35^3 
- 3 /T 2

 [KXC56 («<»> + «<°>) + K2
XC66 («<»> + M,(1)) (2 .4 .164) 

^_ 

2tf 
+ Kie2J

m
 +Klei6<f>f] + -^JFl

m=pull\ 

(Tn + r5s )«1 .31 + Visual + 73iU3% + ( ^ 1 1 + ^35 ¥,13 

-3h-2[K3cuu™ +K3C„U™ +K2
3C4M°I

 +M31)) (2.4.165) 

In 

VllWui +^35«1(,33 + (^13 + ^ 3 s K 3 1 " f l l ^ Y " ?33^.33 

- S A " 2 ^ ^ + <1
))W26(t40

1
) +Wl

(,)) (2.4.166) 

- ^ ' ) - ^ 0 ) ] + - ^ ^ ( 1 ) = o . 
2« 

2.4.10 A quartz piezoelectric resonator 

We now revisit the thickness-shear vibration problem of a quartz 
plate analyzed in the first section of this chapter using the three-
dimensional equations. Consider a rotated Y-cut quartz plate as shown in 
Figure 2.4.17. 
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2h 

X2 

X\ 

Figure 2.4.17. A rotated Y-cut quartz plate. 

The plate is electroded, with a voltage ± 0.5V exp(i cot) applied at 

x2 =±h . We study pure thickness-shear motions described by w,05 , 

without JCi and JC3 dependence. The electric potentials are given by 

^ ( 0 ) = 0 , (/>m =— exp(icot). 
2h 

From Equation (2.4.164) we have the equation for w,(1): 

-3h-2[K?c66uii)+Kle2jW] = pu?\ 

from which we obtain 

« f ' > = - 3 y i g 2 6 

ph\<ol-a>^2h 
exp(icot), 

co„=-
3K, C. 66 

ph2 

From Equation (2.4.157)2 

£><°> =2h(Kle26S?) +s22E?)) = 2h(<Kxe26uV -s22^) 

V expQcot), = £ 22 
*2

26<y» _ j 

*26 

2 2 

= 26 

E-nC, 

(2.4.167) 

(2.4.168) 

(2.4.169) 

(2.4.170) 

22^66 
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The surface free charge per unit area of the electrode at x2 = h is given by 

<r„ = -
Z>«°> "22 

2h 2h co2-col 
V exp(icot). (2.4.171) 

Hence the capacitance per unit area is 

22 c = ̂ - = £ 

V 2h 

2 , . 2 k^co, 26 "'oo 

co2-col 

c = c0+cm, 

C 0 = ^ 0 2h 

„ g22 

~ 2h 

_ f22 "-26 ^ K 
m i i 2 2 

2h co —L co„ 

4^ 
2(co -cox) 

(2.4.172) 

where Co is the static capacitance and Cm is the motional capacitance. 

2.4.11 Free vibration eigenvalue problem 

One of the major applications of the two-dimensional equations 
developed is resonant piezoelectric devices. In these devices the 
eigenvalue problem for free vibration frequencies and modes is of 
fundamental importance. The free vibration eigenvalue problem of a 
piezoelectric body using the three-dimensional equations was studied in 
[9,31]- We discuss the two-dimensional version using the first-order 
plate equations below [31,32]. Consider a plate with the x2 axis along 
its normal as shown in Figure 2.4.18. Let the two-dimensional area of 

X2 

2h xi 

Figure 2.4.18. A piezoelectric plate and coordinate system. 
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the plate be A and the boundary curve of A be C, and C be partitioned as 

CUUCT=C4<JCD=C, 

CunCT=C^nCD=0. 
(2.4.173) 

The eigenvalue problem for free vibrations of a piezoelectric plate by the 
first-order theory is 

-rj°j=fl>22A/w<0) in A, 

-T^b+T^=co2^-pu^ in A, 
ba,b la 3 H a (2.4.174) 

-Dff=0 in A, 
-D%-DF>=0 in A, 

-Sl°>+\(«%+»?2+*„«?+*„«?>) = (> in A, 

-^ )+}(«S+«S) = ° in 4 (2.4.175) 
£ ( ° ) + ^ ° ) + ^ ( 1 ) = 0 in A, 

E®+$=0 in 4 

-T}»+2h(jr9US<»-e^E^O in J, 

9fo3 (2.4.176) 
-^(,)+^-(r^«-^£C.)) = 0 in A, 

D}0)-2Ke^S^+evE^) = 0 in 4 

9/J (2.4.177) 
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- " , ( 0 ) =0 , - « « 

njT}P=0, nbT^=Q on CT, 

- , < • > - * - , » = . o„ c (2A178) 

n,D<»=0, naD^=0 on CD. 

We look for values of a>2 corresponding to which nontrivial solutions 
exist. For convenience we introduce the following vector U: 

cm cO) E-(O) Fmx 

and operators A and B: 

ATT _ L T ( » ) _T<U +r(°> - n<°> - n® - n^ 

- ^ 4 ( « 8 +«ffi). ^0)+*S0) + ^ 0 ) , ^ +#S (1) 

2 

(2.4.179) 

7 ^ 4 - 2 ^ , ^ - ^ 0 , (2.4.180) 

2h3 

BU = {2hpuf\—puf,0,0,0,0,0,0,0,0,0,0}. (2.4.181) 

We also define 

YiA) = {U | Equation (2.4.178) is satisfied}. (2.4.182) 

With the above definitions, the eigenvalue problem can be stated as: Find 
X = o)2 for which there exists a nontrivial U € ~L(A) such that 

AU = ABU. (2.4.183) 
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For two vectors U,Ve S(^4), we introduce an inner product 

<U;V>= f ( w ^ + w ^ W V W V 0 

+ T^Gf +T^G^+D^B^ +D®B® (2.4.184) 

where U is given by Equation (2.4.180) and 

p(o) c-0) r ( 0 ) r ( i )> 
J ij >* ba ' * - ; J * - a i • 

(2.4.185) 

For two vectors U,Ve E(^4), it can be shown by integration by parts 
that 

<AU;V>=<U;AV>, 
(2.4.186) 

<BU;V>=<U;BV>. 

Therefore the operators A and B are self-adjoint. This is consistent with 
the self-adjointness of the three-dimensional operators [9] from which 
the plate equations are derived. With the above formulation in terms of 
the abstract vectors and operators, it can be shown in the manner of [9] 
that the eigenvalues are real and the eigenvectors associated with distinct 

eigenvalues A(m) and ^(n) are orthogonal: 

< AU(m); U(n) >= 0, < BU(m); U(n) >= 0, m*n. (2.4.187) 

With the abstract formulation, in a way similar to [9], it can also be 
shown that the Rayleigh quotient of the variational formulation of the 
eigenvalue problem is 

n ( U ) = < A U ; U > . (2.4.188) 
<BU:U> ' 

2.5 Second-Order Theory 

In this section we explore the effects of the second-order terms in the 
power series expansion. A second-order theory is outlined, and several 
special cases of the second-order theory are examined. 
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2.5.1 Equations for second-order theory 

A second-order theory describes coupled extensional (w^0), a = 1,2), 

flexural ( u^0) ), fundamental thickness-shear (i/p ), thickness-stretch 

(w^) , and symmetric thickness-shear (w„2)) motions of a plate. For the 

electrical behavior of the plate, we consider ^ ( 0 ) , 0m and ^ ( 2 ) . The 

approximate displacement and potential fields are 

(2.5.1) 

We have included a few additional displacement components in Equation 
(2.5.1). «32) and u*p represent the thickness stretch or contraction due to 
Poisson's effect. From Equations (2.2.6) and (2.2.7) it can be seen that 
M^2) together with w^3) contribute to thickness-shear deformations S^ 
and IS,J2) which may couple to the other second-order strains due to 
anisotropy. The two-dimensional plate equations we will obtain are for 
u\0), u*p and u^ only. Other displacements will be eliminated through 
stress relaxations. Within the approximation in Equation (2.5.1), the 
strains and electric fields in Equations (2.2.5) through (2.2.10) become: 

<?(0) _ ,.(0) o(0) _ (0) r.(0) _ (1) 
°1 — "1,1 ' °2 — "2,2 > ° 3 — "3 ' 

55°>=iA)+^>, 5<o)=^)+«p>, ^°)=«a)+«4?, 
(2.5.2) 

Oi — Mi i , *J2 — ^ 2 2 ' 3 — 3 5 
(2.5.3) 

1 — ^ 1 1 > 2 — ^ 2 2 ' 3 — ^ ^ 3 ? 

S<2)=ug+3i43), S<2>=i4J+3«f3), S<a>=ug) + iS ) , (2'5'4) 

E<0) = -$\ 40)=-$\ Ef^-f\ (2.5.5) 
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E^=-^\ E? = -$, E^ = -2^2\ (2.5.6) 

E™=-$\ E? = - $ \ £3
(2)=0. (2.5.7) 

Higher order strains S^p are neglected. From Equation (2.2.17)i we 

obtain 

« ^ l ° ) = 2 ^ r + y r f )
! o,6 = 1A 

TZ+F^ = 2hpii?\ 

TZ-T^ + FP^puV, (2.5.8) 

where we have truncated the right hand sides by keeping the inertial 
terms of the displacement components of interest only. Equation (2.5.8)i 
is for extension, Equation (2.5.8)2 is for flexure, Equation (2.5.8)3 is for 
the fundamental thickness-shear, Equation (2.5.8)4 is for the fundamental 
thickness-stretch, and Equation (2.5.8)5 is for the symmetric thickness-
shear. For the charge equations of electrostatics we have, from Equation 
(2.2.17)2, for an unelectroded plate: 

D^-D^+Dm=0, (2.5.9) 

Zj£>-2Z#>+i)<2>=0. 

The case of an electroded plate will not be examined. In fact, in higher-
order theories, when electrodes are present, it is more convenient to use 
two-dimensional charge equations obtained by the polynomial expansion 
of $ in Equation (2.2.18). 
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For plate constitutive relations we truncate Equation (2.2.12) as 

(2.5.10) 
7 f = 2h{cljklS^ - eklJE^) + ^(cijklS™ - ekiJE™), 

A(0) = 2h(eukS$> + svEf) + ̂ f(̂ > + s,E?), 

*y - \cijkl^kl ekijEk )> 

^/ -^r~(cyki^ki ~ekijEk ) + ~j~(cijkiSki ~ekijEk ) ' 

^2) = ̂ ( r f ^vEf^) + ̂ f(eukSf + svEf), 

(2.5.11) 

(2.5.12) 

where SJp has been neglected. Since Syl) contains i^2) and £^2) 

contains Wj2) and w(
(3), Equations (2.5.10) through (2.5.12) are not yet 

ready to be used. To obtain the proper constitutive relations we need to 
make the following stress relaxations: 

L (2-5.13) 
7?

(2)=0, ? = 3,4,5, 

from which expression of S3
(1), S3

(2), S\2) and SJ2) in terms of other 

strain components can be obtained to eliminate Wj2) and uf in 

Equations (2.5.10) through (2.5.12). Then Equations (2.5.8) and (2.5.9) 

can be written as eleven equations for w,-0), u(P , w„2), ^ ( 0 ) , ^(1) and 

^(2) . In order to predict the exact cutoff frequencies for the two 

fundamental thickness-shear, the fundamental thickness-stretch, and the 
two symmetric thickness-shear modes, five correction factors will be 
needed. 
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2.5.2 Extension, thickness-stretch and symmetric thickness-shear 

To examine the basic behaviors of the second-order equations, we 
study the special case of an isotropic elastic plate. In this case the 
second-order equations decouple into two groups. One is for coupled 
flexure and fundamental thickness-shear, and the other is for coupled 
extension, thickness-stretch, and symmetric thickness-shear. The former 
has been discussed in the fourth section of this chapter. We explore the 
latter below. 

It is obvious that when a plate is in extension there is thickness 
stretch or contraction due to Poisson's effect. At the low frequency range 
this thickness deformation can be approximately determined from the 
stress relaxations in the zero-order theory, i.e., Equation (2.3.15) or 
Equation (2.3.23). When the frequency gets higher or close to the 
fundamental thickness-stretch frequency, resonance of the thickness-
stretch vibration needs to be considered. In addition, high frequency 
extensional waves become dispersive (see Figure 2.1.4). 

First-order, two-dimensional plate equations governing coupled 
extensional and thickness-stretch motions of plates are due to Kane and 
Mindlin [33]. This theory includes the resonance of the fundamental 
thickness-stretch mode and can predict the dispersion of high frequency 
extensional waves. The equations of the Kane-Mindlin theory can be 
reduced to the classical equations of extension for low frequencies and 
long waves [13]. However, the Kane-Mindlin theory has a serious flaw. 
It cannot predict a complex branch of the dispersion curve that the three-
dimensional theory predicts to exist in the frequency range of interest 
[34]. It was also shown in [34] that in order to capture this complex 
branch the second order effect of symmetric thickness-shear has to be 
included. Equations for elastic plates in coupled extension, thickness-
stretch and symmetric thickness-shear motions are due to Mindlin and 
Medick [34] using polynomial expansions. Two-dimensional equations 
containing extensional, thickness-stretch, and symmetric thickness-shear 
and higher-order modes were also obtained in [19] using trigonometric 
expansions. The equations for extensional, thickness-stretch, and 
symmetric thickness-shear in [19] are equivalent to the Mindlin-Medick 
theory in that their dispersion curves have the same geometric structure. 
In the following we will use the equations in [19] for which the 
correction factors have been determined. 
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According to the notation used in [19], we orient the plate normal 
along the x2 axis (see Fig. 2.5.1) 

/\ 
2h 

X2 

Xl 

Figure 2.5.1. An isotropic elastic plate and coordinate system. 

In the absence of body force, the differential equations for coupled 
extension, thickness-stretch and symmetric thickness-shear in [19] are 

2X 
Mu%b + (A + Ml, + —ml>, = pu™, a = 1,3, 

h 

jua2u^bb-(A + 2M)(^-)2u^ 
in 

2X 
,(°) — 7 - « l « ^ + h 

2(A + 4M)A2) _ 
(2.5.14) 

3h *b,b P4\ 

Mua,bb +(A + M)ub,ba M T V U" Ti 2,a ~ PUa ' 

h 3« 

where X and JU are the Lame constants of an elastic material. u(
a ' (q= I, 

3) are extensional displacements, U™ is thickness-stretch, and w<2) is 

symmetric thickness-shear. a,\ and a2 are two correction factors given by 

71 
« i = 7 > <h = ch.<y)> (2.5.15) 

where v is Poisson's ratio. The three-dimensional displacement field in 
this theory is given by 

ua^,x2,x3,t) = i£0)(xi,*3,0 + K J(x„of3,Ocos^(l--f), 
n 

.,(1)/.. „ *\~~„n ft X2-

(2.5.16) 

u2(xvx2,x3,t) = u\ )(x1,x3,/)cos—(1 — - ) . 
2 n 
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The plate resultants are given below. Those associated with extension are 

T^ = (A, + 2M)u^ + Xuf] + —4\ 
h 

r3
(
3
0) = (A+ 2ju)4°i + Xu\y +—4l\ (2.5.17) 

r1f = M4°3
)+<,))-

The two self-equilibrating shear resultants T$ for thickness-stretch are 

T$ = aMl+^\ (2.5.18) 
in 

while the second-order resultants are given by 

3« 

T3f =(Z+2M)u™ + Xu\2) ~ u ? , (2.5.19) 
3« 

TS^rt-S'+«£?)• 
We now consider straight-crested waves propagating in the xi 

direction (d /Sx3 = 0). Furthermore, we look for solutions in which 
M30) = «32) = 0. Then, Equations (2.5.14) reduce to 

(A + 2M)uW+^arfl=pii?\ 
h 

^a2u%-(A + 2ju)(—)2u^ 
2h 

2X 
a,u>V +—^-

3h 
aiUv)+m±Wu$ = piim, 

(2.5.20) 

Let 

(A + 2M>e\ - M&u™ - ^ - ^ ' 1 = Puf\ 
n in 

M,(0)=4(0)expi(£,-ffl0, 

M}2) = 42) expi(£, - a*), (2.5.21) 

4 ° = - i ^ exp/(£t, - cot), 
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so that Equations (2.5.20) yield 

h 

jua2(-A?f)-(A+2M)(-?-)2A2
A) 

2h 

+
 2AaxA^ - M ± M 4 ( ^ = .rf^ 
h in 

(A + 2MX-Al»e)-M£f4V 
h 

For nontrivial solutions, we have 

r r - f i ' -(k-2)x 
-(k2-2)X k2 + a2X

2-Q.2 

3TT 

0 

(k2 + 2)X 

—(r + 2)x r r + 4 - Q ' 
3^-

where we have used the notation 

X = 
2%h 

n 

A + 2ju 

Q = co/(^), 
2h 

E 
p' 

k2=\ = 2-
v2 \-2v 

(2.5.22) 

- 0 , (2.5.23) 

(2.5.24) 

vi and V2 are the speeds of longitudinal and transverse plane waves in an 
unbounded, isotropic elastic body, respectively. Equation (2.5.23) 
determines the dispersion relations for coupled extension, thickness-
stretch, and symmetric thickness-shear modes of the plate. These 
dispersion curves are shown in Figure 2.5.2 for v = 0.25 and a,j= 0.845. 

Besides being able to describe the slope and curvature of the 
dispersion curve for long thickness-stretch waves at frequencies close 
to the first thickness-stretch frequency, Equation (2.5.23) can also pre­
dict the complex branch of the dispersion relation that was missing in 
the Kane-Mindlin theory. We have the following local, asymptotic 
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\m{X) 

Figure 2.5.2. Dispersion curves for coupled extension, thickness-stretch 
and symmetric thickness-shear waves [19]. 

expressions of Equation (2.5.23) for long waves. Near the lowest 
thickness-stretch cutoff frequency, i.e., near X = 0, Q = k , we have 

Q2^k2 1-^[—(k2+2)2-a3(4-k2)]X2, (2.5.25) 
4 -k 9n 

while near the symmetric thickness-shear cutoff frequency ( X = 0 , 
Q = 2), 

Q2 « 4 + _ L ^ _ ^ U y f c 2
 + 2 ) 2 +(4-k2)k2]X2 , (2.5.26) 

4-& 2 9n2 

where 

a 3 = a 2 + - ! r ( A : 2 - 2 ) 2 . (2.5.27) 
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We note that Equations (2.5.25) and (2.5.26) break down when A?= 4 or 
v = 1/3; this represents the degenerate case when the lowest thickness-
stretch frequency coincides with the symmetric thickness-shear 
frequency. 

2.5.3 Elimination of extension 

For long waves at frequencies close to the first thickness-stretch 
frequency Q = k , an approximation can be made to eliminate the 
coupling to extension [35]. Dropping the term quadratic in £, in Equation 
(2.5.22)! for long waves and setting Q = k , we obtain 

A^=-
h 2X 

4>t, 

which is equivalent to 

,(°) 
h 2X 

K X + 2jU 

(2.5.28) 

(2.5.29) 

Substitution of Equation (2.5.29) into Equations (2.5.20)2;3 yields the 
following equations for coupled thickness-stretch and symmetric 
thickness-shear: 

,,(') *N2..(1) . 2Q*+ 4/Q .,(2) _ 
«l,l ' = PU2^ fiaAl -0* + 2/iX—)z« ,J + - ^ — 

2« 3« 

(X + 2M)u™ - M£fU™ - ^ - ^ = Pu?\ 
h 3« 

(2.5.30) 

Now, letting 

u\2) = A[2) e x p / ^ j - art), 

u^ - -iA^ exp/'(£<;, - ox), 

we obtain the following dispersion relation from Equation (2.5.30): 

4 

(2.5.31) 

a3X'+k* & 
3TT 

(kl+2)X 

—(k2+2)X k2X2+4-Q2 

3n 

= 0. (2.5.32) 
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The dispersion curves determined by Equation (2.5.32) for thickness-
stretch and symmetric thickness-shear are plotted in Figure 2.5.3 for v = 
0.25 and a2= 0.845. A comparison to Figure 2.5.2 shows that Equation 
(2.5.32) has the same behavior near the first thickness-stretch frequency 
for the slope, curvature, and complex branch, but the low frequency 
branch of extension has disappeared. It can be verified that near X= 0, Q 
= k and near X = 0, Q = 2, the asymptotic expressions of Equation 
(2.5.32) are exactly Equations (2.5.25) and (2.5.26). Thus Equation 
(2.5.30) can be used to study long, coupled thickness-stretch and 
symmetric thickness-shear waves. 

2.5X a 

2,. 

1.5 

1 

0.5-

0 
0 " \ 

0.5 ~ 

1.5 0.5 

Re(X) 
2.5 2.5 

1.5 

Im(J0 

Figure 2.5.3. Dispersion curves for coupled thickness-stretch and 
symmetric thickness-shear waves [35]. 

2.5.4 Thickness-stretch approximation 

We now further reduce Equation (2.5.30) into a single equation for 

u^p by eliminating w[2) [35]. Similar to the derivation of Equation 

(2.5.29), for long waves and Q. near k, Equation (2.5.30)2 can be 
approximated by 
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(2) _ Sb X + A^i 
1 ~ 3 ; r 2 / l - 2 / / 

(2.5.33) 

Substitution of Equation (2.5.33) into Equation (2.5.30)i results in 

In 

where 

r = a, + 
16 (A + 4{i) 

-a3 + 
16 (k2+2)2 

3 ' 9K2 M(*-2M) ~l ' 9x2 k2-4 

(2.5.34) 

(2.5.35) 

It can be verified that the dispersion relation arising from Equation 
(2.5.34) is 

Q2=k2+rX2 

= k2-
2 l l¥-(k2

+2f-a3(4-k2)]X2, 
(2.5.36) 

4-k2 9n 

which is the same as Equation (2.5.25). Therefore Equation (2.5.34) can 
be used to study long thickness-stretch waves. Equation (2.5.36) is 
plotted in Figure 2.5.4 for two values of v. 

5 -| 

4 -

3 -

i 1 i I i i i 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 
Im(X) Re(X) 

Figure 2.5.4. Dispersion curves for thickness-stretch waves. Solid line: v 
= 0.3. Dotted line: v = 0.35. 
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In addition to missing the complex branch of the dispersion curves, 
another flaw of the Kane-Mindlin theory is that it predicts a positive 
curvature near X = 0 for thickness-stretch modes when v < 1/3 
[13,34,35]. This does not agree with the result of the three-dimensional 
theory. Equation (2.5.20) or (2.5.30) can predict the correct sign of 
curvature for the thickness-stretch branch near X = 0. Since the 
dispersion relation of Equation (2.5.34) is asymptotic to that of Equation 
(2.5.20) or (2.5.30) near X= 0, it can be expected that Equation (2.5.34) 
can predict the correct sign of curvature there. This relies on the sign of 
r, which must be negative for v < 1/3 to yield the correct sign of 
curvature. Calculations of r are listed in the following where the value of 
Cfe as a function of v is from [19]: 

v 0 0.1 0.2 0.25 0.3 0.35 0.4 

a2 0.764 0.798 0.830 0.845 0.860 0.874 0.888 2 (2.5.37) 
r -0.676 -1.03 -1.94 -3.33 -9.39 24.0 9.32 

k2 2 2.25 2.67 3 3.5 4.33 6 

It is seen that for k < 2 or v < 1/3, the sign of r is indeed negative and 
therefore the correct sign of curvature is predicted by Equation (2.5.34) 
near X = 0 for the thickness-stretch branch. We also note the drastic 
change of r near k = 2. In the above analysis we assume that k is 
sufficiently far away from 2 because the degenerate case of k = 2 needs 
special treatment. Since Equation (2.5.34) cannot predict the complex 
branch of the dispersion curve, it is valid for small wave numbers before 
the complex branch comes into play. It is seen from Figure 2.5.2 that the 
complex branch needs to be considered when X is roughly greater than 
0.5. Equation (2.5.24) then implies that Equation (2.5.34) is valid for 
waves with wavelength A = 2n/% > $h, or four times the plate thickness. 
For thickness-stretch vibrations governed by Equation (2.5.34), u^ is 

the major displacement and the corresponding plate resultant is T$. 

Under the present thickness-stretch approximation, from Equations 
(2.5.18) and (2.5.33) we obtain 

Ty=(a2^^)u%. (2.5.38) 

In the fourth section of this chapter it was shown that thickness-shear 
modes exhibit energy trapping behavior. Since Equation (2.5.34) has 
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the same mathematical structure as that for the thickness-shear 
approximation, it can be expected that thickness-stretch modes will also 
exhibit energy trapping. However, due to the fact that r changes sign at k 
= 2, there may be two types of trapping for thickness-stretch modes. 
When k > 2, the situation is the same as the trapping of thickness-shear 
modes because in this case the curvature of the dispersion curve of 
Equation (2.5.34) nearX= 0 has the same sign as that of the thickness-
shear approximation. When k < 2, the situation is different and we will 
discuss this case only. To this end, consider the plate in Figure 2.5.5, 
which has a small geometric discontinuity with hi < h2. 

2h2 

i 

i 

t 

i 
2hi 

k 

hi T i 

i 

2/7 

r 

k-
2a 

-H 

Figure 2.5.5. An elastic plate with slightly different thicknesses in 
different portions. 

Equation (2.5.34) applies to each portion of the plate: 

v?rc4')i - <«i2z41) =i$\ I *i |< a, •*2,11 

„0) 
1 2 

,2„0) v2ru\;u-co2u\ 

*2 > 

um 

where we have denoted 

2 X+2n, n 2 

p 2\ "i CD-, 
X + 2y n 2 

p 2h~, 

(2.5.39) 

(2.5.40) 

At a junction of two portions of a plate, the continuity of u2
l) and T$ 

should be prescribed. In Equation (2.5.40), a>\ and Gh are the thickness-
stretch frequencies of infinite plates with thickness 2hx and 2h2 

respectively. The dispersion curves predicted by Equation (2.5.34) for 
long thickness-stretch waves in infinite plates with thickness 2h\ and 2h2 

are qualitatively sketched in Figure 2.5.6. 
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Im($ <- - • R e ( £ 

Figure 2.5.6. Dispersion curves for long thickness-stretch waves in 
infinite plates with thicknesses 2h\ and 2h2. 

Since h\ < h2, we have (0\ > (Oi- We are interested in time-harmonic 
vibrations with ah < <o< Oh, and for these solutions, we have 

where 

tt^n + sfu^ =°> I *i l< a> 

u^-S^^O, \xx\>a, 

2 2 2 2 
o2 CO, -G) 2 0) -0)2 

°\ = 1 " ' S2 = 2— 

-v-,r -v-,r 

(2.5.41) 

(2.5.42) 

Since for k < 2 or v < 1/3, the parameter r is negative, and since a>1< (0< 
a>\, we have £,2 >0 and 8\ > 0 . Equation (2.5.41) then shows that for 
1*11 < a the solution is sinusoidal and that for |*i| > a the solution decays 
exponentially. Hence, vibration is confined in the central region of |*i| < 
a. Therefore the vibration energy is trapped. Obviously, when k > 2, for 
energy trapping we must have hi > h2, which is similar to the trapping of 
thickness-shear modes. 
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Chapter 3 

Laminated Plates and Plates on Substrates 

Piezoelectric plates are often attached to or embedded in elastic 
plates for various applications. These structures can be treated in general 
as laminated plates. In this chapter we first analyze two special structures, 
i.e., an elastic plate with piezoelectric layers on one or both of its major 
surfaces. Then a general discussion on laminated piezoelectric plates is 
presented, followed by the analyses of two problems of a plate on a half-
space. 

3.1 Elastic Plates with Symmetric Piezoelectric Actuators 

In this section, we consider the simplest case of an elastic plate with 
piezoelectric layers (actuators) symmetrically attached to its major 
surfaces. In this case, bending of the elastic plate can be produced by 
anti-symmetric voltages applied to the piezoelectric actuators without 
coupling to extension. A system of two-dimensional equations for the 
flexural motion of the combined elastic plate with piezoelectric actuators 
on it are obtained from the two-dimensional equations for the 
piezoelectric actuators and the two-dimensional equations for the elastic 
plate by satisfying the plate-actuator interface mechanical and geometric 
continuity conditions [36-38]. The piezoelectric actuators can be partially 
electroded, which has an important consequence of reducing the 
concentration of the actuating shear stress [37]. 

3.1.1 Equations for a partially electroded piezoelectric actuator 

Consider the thin piezoelectric ceramic plate partially electroded at 
its major surfaces as shown in Figure 3.1.1. 

122 
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2h- :: 
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X\ 

Figure 3.1.1. A partially electroded thin piezoelectric plate. 

We summarize the equations for the extensional motion of a 
piezoelectric plate in the third section of the second chapter below. The 
major terms in the expansions of the mechanical displacement w, and 
electrostatic potential 0 are 

/,(0)(**>0, 
• x^m(xb,t), a,b = \,2, 

w, = w> 

</>-. 
(3.1.1) 

where we have also considered the flexural displacement uf^, which 
will be included in the analysis. Note that in Equation (3.1.1)i we have 
not explicitly written the thickness-stretch displacement that accom­
panies the extension of the plate. In general the expansion of (j) has a 0(O) 

term that is independent of X3. In the structure to be analyzed 0(O) has no 
contribution. Therefore we start from 0(1). The balance of linear 
momentum now takes the form 

1ab,a ^ rb 

F™=p'2h'u?\. 

••P'2h'ii<?\ 

where p' and 2h' are the actuator mass density and thickness, 

Tm _ f T d 
1ab - ]_ , IabaX3, 

p(0) = 
j \T3J& 

(3.1.2) 

(3.1.3) 
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It is assumed that the plate is very thin and does not resist bending. The 
surface load is responsible for its motion in the JC3 direction. In the 
electroded region the electric potential 0(1) is at most a function of time. 
In the unelectroded region the following equation of electrostatics is 
needed to determine (j>m: 

D (i) •D^+Dm 0, 

where 

A W = £ D,x"3dx3, D^=[x,D,th, 

The plate constitutive equations are 

r/0)=2/>'(r;A(0)+^(1)X r,s = \,2,e, 

where 

A ( 0 ) 

Di» 

= 2h'(y,i 

2h'3 

3 

e(0) 
^ab 

c(0) 

<;*+? 

- \ , 

•Sxtm\ 

3 

(0) , (0)x 
a,b + ub,a > 

(3.1.4) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

Note that Equation (3.1.6)3 is taken from Equation (2.4.21) by setting 

SJP = 0. For a ceramic plate poled in the JC3 direction, from Equations 

(2.3.35) and (2.3.36), in the notation of this section 

'12 

\y'n] = 

WksV 

[gki] = 

L-12 

0 

0 

0 0 c, 

0 

0 

0 

0 

pp 

e31 

,p _ cE -(cE\2lcE 

c l l \h3) / c 3 3 ' 
c i2 _ c i 2 ( C B ) ' C: 

33 ' 

' 3 3 ' 

c 66=< '66 > 

ei\ _ g 3 1 e33C13 ' C 3 3 ' 

k = 1,2,3, 

0 

0 

0 

0 

FP 
fc33 

£\\ ~ £l\ +e\5 'C44' 

— £ •)-( + 633 '33 '33 . / C 

(3.1.8) 

(3.1.9) 

(3.1.10) 
33-
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With Equations (3.1.8) through (3.1.10) we can write Equation (3.1.6) as 

/»„«» rPAQh D^=2h\e^a-s^), 

D (i) 
2h »3 

PAV •*M 
(3.1.12) 

Substitution of Equation (3.1.11) into Equation (3.1.2)i yields the 

equations for the mechanical displacement w^0) 

rP,A0) 4-rp?A0) + (rp + rp ~\i/0) + pp(hm +——F 
C\\U\,\\ + C66M1,22 + VC12 + C66>>"2,12 + ei\?,\ + Oh 

1 

(0) 
•P'u?\ 

(3.1.13) 
;(0) 

\C\2+C66)U\,\2+C66U2,\l+Cl\U2,22+ei\9,2 + ~ , , r 2 ~ P U2 

Substituting Equation (3.1.12) into Equation (3.1.4) we obtain the 
following equation for 0(1) in the unelectroded region: 

2h" 
•eM% -2h'ep^U2h'£&

m = 0, (3.1.14) 

where we have taken Dm = 0. 

3.1.2 Equations for an elastic plate 

A schematic diagram of an elastic plate with thickness 2h and 
density p is shown in Figure 3.1.2. 

A *3 

2h -*• X\ 

Figure 3.1.2. An elastic plate. 
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The flexural equations of motion for an elastic plate with the effects of 
shear deformation and rotatory inertia can be obtained from the equations 
in the fourth section of the second chapter. 

TZ-Tg+FV-lfih**?, ( 3 ' U 5 ) 

where 

FJ0) =T33(h)-T33(-h), (3.1.16) 

Fb
m=h[T3b(h) + T3b(-h)\ 

We consider an orthotropic elastic plate with the following constitutive 
relations: 

T$=\h\ynuV+ynu%), 

(3.1.17) 

T^=^h3(r2luS+r22«&\ (3-1-18) 

where 

c44 — C 44 ' C55 — C55 ' 

Y\\ =C\\ -Cu/c33, Yn =c22 -c2
23/c33, (3.1.19) 

712 ~C\2 - C 1 3 C 3 2 'C33> ^66 = C 6 6 -

The displacement field of the elastic plate is approximately given by 

ua=x3u?, «3=«30)- (3-1-20) 
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3.1.3 Equations for an elastic plate with symmetric actuators 

Next we consider an elastic plate with partially electroded 
piezoelectric actuators symmetrically attached to its major surfaces (see 
Figure 3.1.3). 

2h'_ 

2h 

x3 

.*! 

Figure 3.1.3. An elastic plate with symmetric piezoelectric actuators. 

We combine the equations for a thin piezoelectric plate (actuator) and the 
equations for an elastic plate into a set of equations for the flexure of the 
elastic plate with actuators on it. This is done by satisfying the geometric 
and mechanical continuity conditions between the elastic plate and the 
piezoelectric actuators. From this point forward we use superscripts T or 
B for fields associated with the top or the bottom actuator. Fields without 
such superscripts are for the elastic plate. From Equation (3.1.3) we 
obtain the following forces on the top actuator: 

F?)T=-T3b(h), F3
mT = T33(h). (3.1.21) 

From the displacement fields in Equations (3.1.1) and (3.1.20), the 
continuity of mechanical displacement between the top actuator and the 
elastic plate can be written in the following form: 

(0)T = hu (i) 
u 

(0)r _ „(0) 
ui 

Similarly, for the bottom actuator we have 

F™" =T3b(-h), F (0)8 _ T33(-h), 

(3.1.22) 

(3.1.23) 

MB M\ u 
( 0 ) * = M ( 0 ) (3.1.24) 
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From Equations (3.1.21), (3.1.23) and (3.1.2) the equations of motion for 
the top and bottom actuators are 

TZ-^(h) = p'2h'iir, 

-T^h) = p'2h'ur, 

rzB^3b(-h)=P'2h'ur, 
(J.1.26) 

T33(-h) = p'2h'iii0)B. 

For the elastic plate, from Equations (3.1.16)2>3, (3.1.25) and (3.1.26) we 
have 

F3
(0) = -p'2h'ufT -p'2h'uf)B, (3.1.27) 

Fb
m=KTZ -P'2h'iir -TZB+P'2h'iiri (3.1.28) 

Substitution of Equations (3.1.27) and (3.1.28) into Equation (3.1.15) 
yields 

T^=2phui0) +p'2h'u^T
 + p'2h'uf)B, 

(TV+hTbW-hTbT\b-T^ (3.1.29) 

= 2ph3uV+h[p'2h'ii«>)T -p'2h'u^B\ 

With the continuity conditions in Equations (3.1.22) and (3.1.24), we can 
write Equations (3.1.29) as 

(3.1.30) 
f(l) _ r(0) _ K:0) V ' 
1ba,b J3a ~ lua ' 

where 
f(i) _ Tm , uT(.°)T hT^B 

1ba ~1ba +nlba ~nlba ' 

m = 2ph + 4p'h', (3.1.31) 

I = -ph3 +4p'h'h2. 

T^b has the clear physical meaning of total moments consisting of the 

moments due to the bending of the elastic plate and the extension of 

the actuators, m is the mass per unit area and / the rotatory inertia of 
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the plate with the actuators. In the following we assume that the applied 
voltages on the top and bottom actuators are of equal magnitude and 
opposite signs and denote 

^)T=_(/>mB=^)_ ( 3 1 3 2 ) 

Then for constitutive relations, from Equations (3.1.3l)i, (3.1.11), 
(3.1.18), (3.1.22) and (3.1.24) we obtain 

Tg=rn»$ +W% + 4hh'e&m, (3.1.33) 

where 

7u = f AVii + 4h'h2cp
:, yn = \h3yX2+4h'h2cp

2, 

7n =\h3y12 + 4h'h2cp
x, y66 = h3y66 + 4h'h2c&. 

(3.1.34) 

Expressions for T$ in terms of u^ and u^ are given by Equation 
(3.1.17). Substitution of Equations (3.1.17) and (3.1.33) into Equation 
(3.1.30) gives the equation for the flexural and thickness-shear motions 
of the whole plate including the actuators 

2hK^c55 («g\ + « $ ) + Ihxlcu (w$2 + w$ ) = mu^, 

ru^+rn4lx+^'he3
p^ 

+ r66("i% +4l2)-2hK2c55{uf} + K1
(1)) = /ii1

(,\ (3.1.35) 

y22u
{
2% + ynu§2 + 4h'hep

x</>f 

+ 6̂6 ("1% +U%)-2hK2C4M°l +4)) = Iii^. 

In the unelectroded portions of the actuators where ^(1) is unknown, 
Equation (3.1.14) is needed which now takes the following form with the 
use of Equation (3.1.22)i: 

2h'2 

-—sM% -2h'hep
lu^a+£

p
32h'lf>

m=0. (3.1.36) 
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At the boundary of a finite plate with a unit normal na and a unit tangent 

sb we need to prescribe 

naT^nb or « B \ , 

nai$>sb or i/»5fl, (3.1.37) 

T$> or „<»>. 

For electric boundary conditions we need to prescribe 

«„Z)B
0) or $>(1). (3.1.38) 

Although the equations derived in this section include shear deformation 
and rotatory inertia and can be used in situations when the elastic plate is 
not very thin, the piezoelectric actuators are still assumed to be very thin 
compared to the elastic plate and are treated as thin films that are in 
extensional motions and do not resist bending. 

3.1.4 Reduction to classical flexure 

When the elastic plate is very thin, the effect of shear deformation 
and rotatory inertia can be neglected. Equations for this case were given 
in [37], and can be reduced from the equations derived above. For thin 
plates we neglect shear deformation and rotatory inertia, which results in 

7 = 0, i ^ - t t j 0 ; . (3.1.39) 

Then, similar to the reduction in the fourth section of the second chapter, 
Equation (3.1.33) and Equations (3.1.35) through (3.1.37) reduce to 

iff =-yii«£?i -rn«i% +4h'he^l\ 

T^=-rn«i% -722^2 +4h'he(Jm, (3.1.40) 

7 12 _ i 2 1 "" z / 6 6 " 3 , 1 2 ' 

fd) __£ u(0) _2(y +7Y W0 ) -v w(0) 

1ab,ab- /11M3,1111 Z V 1 2 + Z / 6 6 JM3,1122 /22M3,2222 

+ 4h'hefiW§ + +%) = miif\ (3.1.41) 

- ^ s ^ % +2h'he&Z +2h'e&V = 0, 
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where 

.(1) ^ (3-1.42) 

r ^ + % - or Mf, 

? ; (
3

0 )=7S, f « = n f l f ( g
) j i . (3.1.43) 

5.7.5 Dispersion relations 

To see the difference between Equation (3.1.35) and Equation 
(3.1.41)], we consider the one-dimensional case of fully electroded 
actuators with shorted electrodes. Then 

i41} = 0, ^(1) = 0, <?2=0. (3.1.44) 

From Equation (3.1.41) we obtain 

-rn«l%n=™i0)- (3-1.45) 

The substitution of the wave solution uf^ =exp/'($c, - cot) into Equation 
(3.1.45) leads to the following dispersion relation for flexural waves: 

fi>2=%£4. (3.1.46) 
m 

Under Equation (3.1.44), from Equation (3.1.35) we have 

2hK
2c55{uf}x+u^) = rhuf\ 

ynu[l-2hKtc55(u?l+uV) = iu?\ 

Consider the following waves: 

ui0) -Aexpi(&cx - cot), 
PK^ (3.1.48) 

u\' = Bexpi(^xx - cot). 

Substitution of Equation (3.1.48) into Equation (3.1.47) results in 

2hK,2c55 {-£,2A + i£B) = -mco2 A, 
„ (3.1.49) 

- fn^B - 2hK2c55 (i$4 + B) = -Ico2B, 
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which is a homogeneous system for A and B. For nontrivial solutions the 
determinant of the coefficient matrix has to vanish, which yields the 
dispersion relation 

-2 -2hic?c554
2 

ma) 2hrcx c55i^ 

•2hK?c„it I<D2-yne • 2hic1
2c55 

0. (3.1.50) 

Normalized dispersion curves predicted by Equations (3.1.46) and 
(3.1.50) for the case ofh = 20h' are plotted in Figure 3.1.4 in which 

(3.1.51) 

X 

0.2 0.4 0.6 0.8 

Figure 3.1.4. Dispersion curves of flexural and thickness-shear waves. 

The correction factor is simply taken to be 1 in the calculation, as an 
approximation. One basic difference between Equations (3.1.50) and 
(3.1.46) is that Equation (3.1.46) has only one flexural branch of the 
dispersion curve, whereas Equation (3.1.50) has two branches for 
flexural and thickness-shear waves. For long waves with vanishing £ 
Equation (3.1.46) implies a vanishing 0). The flexural branch of Equation 
(3.1.50) has a vanishing a> near £ = 0. The thickness-shear branch has a 
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finite cutoff frequency at £ = 0. For flexural motions, Equation (3.1.46) 
and the flexural branch of Equation (3.1.50) agree only for very small 
values of £h. Since in the flexural problem of a finite plate the wave 
number £ is of the order of the inverse of the dimension L of the plate, 
Equation (3.1.46) is valid only for plates with small values of h/L, or 
very thin plates. When h/L is not very small, the equations with 
thickness-shear deformation and rotatory inertia should be used. 

3.2 Elastic Plates with Piezoelectric Actuators on One Side 

In some applications an elastic plate carries a piezoelectric layer only 
on one side, either as an actuator or a sensor. In this case the structure is 
sometimes called a unimorph. For unimorphs, due to the asymmetry 
about the middle plane of the structure, bending and extension of the 
middle plane are inherently coupled. This causes complications in 
modeling. In this section we derive two-dimensional equations for a plate 
piezoelectric unimorph and use the equations obtained to analyze circular 
disk unimorphs [39]. A unimorph is a special case of laminated plates. 
Two-dimensional equations for laminated piezoelectric plates can be 
obtained by combining equations for each layer like in the previous 
section. They can also be obtained directly by substituting approximate 
expressions of the global displacement and potential fields into the 
variational formulation. In the variational approach, since a laminated 
plate is a body with piecewise constant material parameters that do not 
have derivatives across an interface, the integrations in the variational 
formulation have to be performed layer by layer. Interface continuity 
conditions on traction and electric displacement are part of the stationary 
conditions of the variational procedure. These conditions can be satisfied 
exactly by three-dimensional solutions, or approximately by two-
dimensional solutions. Another approach for developing equations of 
single-layered or laminated plates is to calculate moments of various 
orders of the three-dimensional equations and fields by integrating them 
through the plate thickness [40,41]. This is the approach we follow in 
this section. 

3.2.1 Classical theory 

Consider the two-layer plate in Figure 3.2.1, which is asymmetric 
about its middle surface. 
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A *3 

Middle 
surface Molal 

.\.^Z 
Electrodes Ceramic f p \ L 

A 
h. 

r̂  
> = K 

^ <* = 0 

Figure 3.2.1. A piezoelectric unimorph. 

Instead of combining separate plate equations for the elastic and 
piezoelectric layers by the interface continuity conditions, we begin with 
an approximation of the global displacement and potential fields for both 
layers. For coupled extension and classical flexure, the major terms of 
the displacement field are: 

"*3 \X\ J %2 ' "*"3 ' / = ^3 \X\,X2,t), 

u](x1,x2,x3,t) = u<i0)(x1,x2,t)-x3u^, (3.2.1) 

where w£0) are the middle surface extensional displacements, and «<0) is 
the middle surface flexural displacement. The strains corresponding to 
Equation (3.2.1) are 

c _,.(o) • r M ( 0 ) <7 - u m - x M ( 0 ) 

•*3"3,11 ' ° 2 — M2,2 -*3"3 ,22 ' 

j«2 — O^ — ^ 1 2 ^ 2 1 £*X\U'i 

(3.2.2) 
2o! - ) — o f i — « i 9 -r « ? 1 - i" ,-3"3J12 • 

For the ceramic plate which is transversely isotropic, we have 

" 1 = ^ll-M + SU*2 "*" SV>^ + " 3 1 ^ 3 ' 

2 _ ^ H ^ l + 5 11^2 + + 1 $ 1 3 ^ 3 + " 3 1 - ^ 3 ' 

" 6 = 5 66^6> 

(3.2.3) 
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where s66 = 2(sn-si2) and £3 = -V/hc. For a thin plate we make the stress 
relaxation 

T3 = 0. (3.2.4) 

Under Equation (3.2.4), Equation (3.2.3) can be inverted to give 

'\ = C 1 1 " 1 + C 1 2 0 2
 — e31-^3> 

T2^cx
p
2Sx+cx

p
xS2-e^E3, (3.2.5) 

^12 ~ C 6 6 ^ 6 ' 

where 

: 5 U / A , c,^ = - 5 1 2 / A , A = sj2, - 5 ^ 
(3.2.6) 

(3.2.7) 

>12> 

«31 = ^ 3 1 /(*11 +Sl2), Cl =1/S66 = (c[x -c[2)/2. 

Then the relevant electric constitutive relation takes the form 

D3 = d3X(Tx+T2) + e33E3 

= e3
p

x(Sx+S2) + £f3E3, 

where 

^ 3 = ^ 3 3 - 2 ^ 3 1 . (3.2.8) 

Equation (3.2.7) is useful when the charge or current on the electrodes at 
the major surfaces of the ceramic plate needs to be calculated. 

For the elastic metal layer that is isotropic, we use a hat to indicate 
its material parameters. Using a method similar to the derivation of 
Equation (3.2.5), we have 

7, =c11i>1 +cl2S2, 

T2=cx
p

2Sx+cfxS2, (3.2.9) 

^12 = C 6 6 " ^ 6 ' 

where 

C l l ~ s\l ' &> c\2 ~ ^ 1 2 ' A , A —Jj[ SX2, 

cp
6=l/s66=(cp

x-c
p

2)/2. 
(3.2.10) 
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With Equations (3.2.5) and (3.2.9), we calculate the plate extensional 
resultants as 

Tjf = lTndx, 

- a i/0) + a »y(0) + h w ( 0 ) 4- h w ( 0 ) - h op F 
- " l l " l , l + " 1 2 " 2 , 2 + 0 l l "3 , l l + °12M3,22 "ce3l£'3> 

l h ( 3 . 2 . 1 1 ) 

- a u(0)+a u(0)+h w ( 0 ) +b w ( 0 ) - h e p E 
_ " l 2 " l , l + " l l " 2 , 2 + °12"3,11 + 0 l l"3,22 " c ^ l " ^ ' 

*12 — J ^ ^ n ^ 

where 

_ "66 l " l , 2 + "2,1 / + Z°66"3,12 ' 

fli i = cu Ac + Cu K, al2 = c[2 hc + c& hm, 

«66 = C 6 6 ^ c +C«,K = («11 - « 1 2 ) / 2 ' 

*.l =|(<1 - ^ > A > .̂2 =|fcP2 ~ ^ K * U . (3-2"12) 

b66=\(c£6-£g6)hchm=(bu-bl2)/2. 

In obtaining Equation (3.2.11) we have made the usual approximation 
that in the thin ceramic layer the electric field E3 is essentially 
independent of JC3 [3]. Similarly, the plate bending and twisting moments 
are given by 

7j, = y^T^^dx^ 

- _ / , ,/°)_A M(°)_v w(0) - v M(0) + / I / I P P F 
- °11"1,1 °12"2,2 / l l " 3 , l l /12M3,22 +"c"»i e31- c ' 3> 

r22 = J_ ^22*3^3 

- _A M(°) _ A „(°) _ v M(°) _ y u ( ° ) + / , /, eP F 
- °12"l,l °11M2,2 /12"3,11 /U"3,22 + " e " m e 3 1 £ , 3 ' 

- - / > f M ( 0 ) + w ( 0 ) s > - 2 v M ( 0 ) 

_ °66 V"l,2 + "2,1 J z / 6 6 " 3 , 1 2 ' 

(3.2.13) 
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where 

rn =
 cA(hi+3hx)+^(hi+3hX] 

, p / \ zp 

Yn = ^ - f e + 3 A c ^ ) + ^ - f c +3hX\ (3-2-14) 

r66 = ^ f f e + 3 ^ ) + ^ - f c +3h?hm)=(ru -Yn)l2. 

For the plate equations of motion for extension and flexure, instead of 
using the variational principle, we integrate the three-dimensional 
equations of motion through the plate thickness 

?Z +\Tibth =(Pchc+PmhmWl0) +\iPc -Pm)hchmuf}, 2 

TZ+\T*th={PcK+pmK)u?)-

The second term on the right hand side of Equation (3.2.15)j is in fact 

due to the first-order displacement and is usually smaller 

than the first term because it depends on the difference of the mass 
densities and it has a spatial derivative. The classical theory for flexure is 
for long waves with small wave numbers. A spatial derivative is 
effectively a multiplication by the small wave number. The plate moment 
equations are obtained by integrating the product of the three-
dimensional equations of motion and x^ through the plate thickness. This 

gives the plate transverse shear resultants TJ^ in terms of the moment 
resultants 

TZ - 4 0 ) + M J - * = -\iPc -pm)KK*T • (3-2.16) 

In Equation (3.2.16) the rotatory inertia has been neglected for classical 
flexure. The surface load in this equation is neglected below. 

In summary, we have the two-dimensional equations of extension 
and flexure (3.2.15), constitutive relations (3.2.11) and (3.2.13), shear 
force-moment relation (3.2.16), and strain-displacement relations (3.2.2). 
With successive substitutions, Equation (3.2.15) can be written as the 

following equations for uf^, uf^, and w^ : 
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066vVo) +^^v(vV(Vz>nv(v2
Mf) 

h -Ke^VE.+lT^+T^] 

= {pchc + Pmhm)ui0)+^pc-pm)hchmM0), (3-2.17) 

-r„v2v2
Mf -^v 2 (v .« (»V^A + [r33fft 

= ( p A + A A ) ^ ~\{Pc -Pm)hchmV-n{«\ 

where 
u(0)=Ml

(0)i1 + 40 ) i2 , 
(3.2.18) 

V = i,a1+i252 , V=d\+d\. 

At the two-dimensional boundary of a plate with an in-plane unit exterior 
normal n and an in-plane unit tangent s, we may prescribe 

r ( 0 ) or w(0) Tm or w(0) 

r(0 . rd) o r M(0) r ( D o r M ( ° ) V • • J 
i«3 +1ns,s OT " 3 ' ^ n OT "3,n • 

3.2.2 Stress function formulation for static problems 

For static problems, it is often convenient to use a stress function for 

the extensional part of the problem. Consider the case of [T3b ~\h_h = 0. 

The static form of Equation (3.2.15)i becomes 

7 ^ = 0 , (3.2.20) 

which can be identically satisfied by the introduction of a stress function 
yj through 

Z i f ^ . 2 2 , TM=yM, r1 2
0 )=-^> 1 2 . (3.2.21) 

Then, from Equation (3.2.11) 

i// - n um+n M ( 0 ) + / > w ( 0 ) + A w ( 0 ) -hepF 

V\22 _ " l l " l , l +"12"2 ,2 + ° l l " 3 , l l + °12"3,22 " c ^ l " ^ ' 

V.n = «i2«i(? +*ii"w +ii2"30n + *ii«$2 - W i ^ s . (3-2-22) 

- ^ 1 2 = « 6 6 ( " I
( 0 2 ) + ^ 1 ) ) + 2 6 6 6 < 1

)
2 -
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Equation (3.2.22) can be inverted for 

"1,1 ~ ^ 2 ^ , 1 1 2 2 ^ , 2 2 
« 1 1 - « 1 2 « 1 1 - « 1 2 

fllAl ~ a 1 2 ^ 1 2 , , (0) « n ^ i 2 ~ Q l 2 ^ U „ ( 0 ) , ^ c g 3 1 F 
2 2 3,11 2 2 3,22 "*" ^ 3 > 

a n -a 1 2 «i i-«n an+«i2 
(0) _ a l l . . . Q12 

"2 ,2 _ 2 2 ^ . 1 1 2 2 ^ , 2 2 
«n-«i2 on-al2 

aubn -anbu _(0) OiAi~fi2*i2 „(o) , ^ce3i F 
2 2 3,11 7 2 3,22 i~ c 3 ' 

« 1 1 - « 1 2 « 1 1 - « 1 2 « 1 1 + « 1 2 

„(«)+„«») =_J_„„_2A66.1|(0) 

(3.2.23) 

1,2 + M2,1 _ ^ , 1 2 M3,12 
" 6 6 

2{bn-bn) (0) 
y \12 "3,12 • 

a l l ~ a 1 2 a l l - « 1 2 

Substituting Equation (3.2.23) into the following compatibility equation: 

("l(,?),22 + («$),11 = («U + "2°,}),12 , (3-2.24) 

we obtain 

" i i V V - ^ i W f + ^ V2E3 = 0 , (3.2.25) 
« U + « 1 2 

where 

a n = — ~» 6u = 2 2 • (3.2.26) 
an-an au-an 

Substitution of Equation (3.2.23) into the moment expressions in 
Equation (3.2.13) gives 

TlP =-rn4% -fl2«3°22 -^1^,11 -bn¥,22+KKe^, 

T£)=-ri2«i% -rn"i% -bx2V,n -bu¥,22+KK^E„ (3.2.27) 

•M2 = — 2 ^ 6 6 M 3 1 2 — b66i//u, 
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where 

- _v
 au(bu+bi2)-2aububn 

I\\ -J\\ 2 2 a\\ 

2anbnbn-
}\2-/n 2 an 

r a i 2 * i 2 - a i A i 
°\2 ~ 2 2 ' 

an-an 

-an 

an(bu 
2 

-au 

~bn)2 

ba = 

+ bu) 
? 

K=hm 

* l l - ^ 2 

au-an 

bU +^12 

au+an 

(3.2.28) 

Then Equation (3.2.15)2 takes the following form: 

- f „ V 4
W f -bnV

4
¥ + hmhce^2E, +[T,3lh = 0. (3.2.29) 

In this stress function formulation the equations that govern if/ and wf 

are Equations (3.2.25) and (3.2.29). 

3.2.3 A circular plate under a uniform load 

As an example we consider circular plates under axi-symmetric loads. 
For axi-symmetric problems in polar coordinates, we have 

„4 d4 2 53 1 d2 Id 
V = — r + r-^r—r + -dr4 r 8r3 r2 dr2 r3 dr ' 

T(U> = • n(0) _ 1 dy_ 

r dr 

T® = -TnuZ J-^uf) -buY,rr - % , + W ^ , (3-2.30) 
r r 

r0) -_Zk, , (°) -v w(0) - -^ - i / / -A i// +h hpp F 
Iee M3,r /12"3,/r ¥ ,r °\2¥,rr+nmncenL/3' 

r r 
j(0) _01rr Lrr 2 80 

dr r 
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First consider a circular plate of a radius R under a uniform pressure 

[r33 ]h_h = <70 (see Figure 3.2.2). The plate is simply supported at the edge. 

In the radial direction it is allowed to undergo extension freely. 

S, A A A 

t P 

t 
Qo 

A t t A A 

£ 
• < -

2R £ 

(3.2.31) 

Figure 3.2.2. A circular unimorph under a uniform load p. 

The problem is axi-symmetric. The boundary value problem is 

-ynV
4uf)-bnV

4
¥ + qo=0, r<R, 

auV*p-bnV
440) = 0, r<R, 

Tr
{P=0, r = R, 

M(°) =0, r = i?, 

7^=0, r = J R , 

all fields are finite, r = 0. 

Note that £3 appears in Equation (3.2.31)5 through Equation (3.2.30)3. 
The solution is determined as 

M(0) = ?lLQr*+QR2(Alr
2+A2R

2) + A3E3(R
2 -r2), (3.2.32) 

An yr=-U-Q(r*-2Rir'), 
4 

(3.2.33) 
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where 

e=—r 9o 

1 6 ( 0 , ^ , ! + ^ ) 

_ 3aiiFn + ajifi2 + 2 5 i + 2 V12 

2(Fn+Fi2) 

5«iiFn + «nFi2 + 4^ii + 4*1 A 2 

(3.2.34) 

^ 2 = 

4=" 

4(rn +r i 2 ) 

2(Fll+Fl2) ' 

For numerical results we consider PZT-5H for the ceramic plate. For the 
metal plate we consider stainless steel with Young's modulus E = 
20x10'° Pa, shear modulus G = 74 GPa, mass density pm = 8.06xl010 

kg/m3, and Poisson's ratio v = 0.313. Figure 3.2.3 shows the deflection 
under p for different £3. By applying a different electric field, the 
deflection of the plate can be controlled. The dotted lines are from a 
finite element numerical analysis by ANSYS for comparison. 

£3=0V/i 

£3=55 V/mm 

-1.5E+00 -1.0E\00^-5JQ! 

£3=220 V/mm 

rlR 

S.OSr.Oi^l.VE+OO 1.5E+00 

/ / £3=110 V/mm 

Figure 3.2.3. Deflection underp for different E3. q0irR2 = 2 N, hc= 0.4 
mm, hm = 0.15 mm, R - 12.7 mm. 
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3.2.4 A circular plate under a concentrated load 

Next consider a simply supported circular plate under a concentrated 
load P at the center (see Figure 3.2.4). 

£ 
<<-

t 
t P 

27? £ 
Figure 3.2.4. A circuit unimorph under a concentrated load P. 

The boundary value problem is 

a n V V - * i i V 4 « l 0 ) = 0 , r<R, 

7 l 0 ) =0 , r = tf, 

,(») = 0, r = R, 
(3.2.35) 

7 ^ = 0 , r = R, 

all fields are finite, r = 0, 

where $>) is the Dirac delta function. The solution is found to be 

uf) = Bx Pr2 Inr + P(B2r
2 + B3R

2) + B4E3 (R
2 - r2 ), 

^ = £ 5 Pr 2 l n r + 56Pr2 
(3.2.36) 

where 

Bl=2(bli+bl2), 

B2=-[ru{3 + 2]nR) + yi2(l + 2]nR)]bi^ + bn 

Yu+Tn 

-\bu(l + 2\nR) + bn{\ + 2hiR)\ + (\ + 2\nR)(bn+bn), 
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B3 = -2lnR(bn + ^ 2 ) + [fu(3 + 21n^) + f12(l + 21nJ?) ]^ 1 + ^ 2 

+ [^1(3 + 21ntf) + ̂ 2 ( l + 21n/?)]-(l + 2h7?)(^ 1 +6 n ) , 

B KKel\ 
2(Fn+Fi2) ' 

^s=2(7n+yi2). 
5 6 = - ( l + 21n/?)(7u+712), 

P- P 

I6n(bnyu-buyn) 

(3.2.37) 

£3=OV/mm 

6.0E-06T M3TO(m) 

£3=55 V/mm 

-1.5E+00 -1 .OÊ PO '•--5-.eE'Or 0. 

-2.0E-06 

.̂-OB-Oi'V lJlE+00 1.5E+00 

£VH0V/mm 
£3=220 V/mm 

-6.0E-06 

Figure 3.2.5 Deflection under P for different E3. P = 1 N, hc= 0.4 mm, hm 

= 0.15 mm, R = 12.7 mm. 

Figure 3.2.5 shows the deflection under P for different £3. The behaviors 
of the curves in Figures 3.2.3 and 3.2.5 are similar. The deflection 
produced under a concentrated load P = 1 N is comparable to the 
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deflection under a uniform load of irR2q0 = 2 N. This is as expected 
because a concentrated load at the center is more effective in producing 
deflection. 

3.3 Laminated Piezoelectric Plates 

In this section we study motions of multi-layered piezoelectric plate 
laminates in general. Two-dimensional equations for laminated plates are 
derived by power series expansions, and are truncated to a first-order 
theory for coupled extension, flexure and thickness-shear. 

3.3.1 Power series expansion 

Consider an Af-layer piezoelectric plate of total thickness 2h with the 
x3 axis normal to the plate (see Figure 3.3.1). The two plate major 
surfaces and the N-l interfaces are sequentially determined by x^ = -h = 
ho, hi, ..., hN.\, and hN = h. 

4- »-

I hN = h 

1 ». 
Xi 

hi 

1 h0 = -h 

Figure 3.3.1. A laminated piezoelectric plate. 

First we expand the mechanical displacement and electric potential into 
power series in X3: 

K,=5>3"«<"\ ^=2> 3 y> . (3.3.D 
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Then 

S9=^Sf\ E,=^E}"K (3.3.2) 
n n 

where 

siH) 4 [M^+u%+(»+ix* f l«r}+v^ , }>]. (3 3 3) 
£ w = - ^ " ) - ( „ + i ) ^ 3 . ^ " + i ) . 

For the two-dimensional equations of motion and charge, we multiply 

TjtJ=pu„ D„=0 (3.3.4) 

by x", integrate the resulting equations across the thickness of the /-th 

layer from /t/.i to hi, sum over /, and make use of the interface continuity 
conditions of the traction vector and the normal component of the 
electric displacement. We then obtain the following n-th order field 
equations 

Tv"t -nTJJ-l)+FJn) ^p^^iifK 
(3.3.5) 

D$ -nD^ +DW =0, 

where 

{7j">, A(n)} = lh {Ty , D, }x"3dx3 = X £ {Tv , D, }x"3dx3, 

Ff] =[x»3T3Jth, /)<"> = [x"3D3 f_h, (3-3.6) 

Substitution of the three-dimensional constitutive relations of the 7-th 
layer 

Tij = cijkiSki ~ ekijEk > 

D^eJuSu+s'gEj 
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into Equation (3.3.6)! gives the plate constitutive equations of order n as 
follows 

1ij ~ / \ciikl °kl ekij ^k h 
m 

^ )=E(C ,^ )-4"+" )£/ f f l ))> 
(3.3.8) 

where 

(3.3.9) 

7=1 '"'-1 

g*y = 2-1 L ekijX3X3 "Xi> 
7=1 h/-' 

7=1 * ' - ' 

3.3.2 First-order theory 

For a first-order plate theory of coupled extensional, flexural and 
thickness-shear motions we make the following truncation of Equation 
(3.3.1): 

M, =uf){xx,x2,t) + xiuf\xx,x2,t) + xlu\2){xx,x2,t), 

A<°> </) = <t)K >(x1,x2,t) + x30
(>(xl,x2,t), 0)/ 

(3.3.10) 

where u^ and wj2) will be eliminated by stress relaxations. The strains 

and electric fields are 

Sp=Sf+X3Sf, p = l,2,-,6, 
7(0) 

E.sEr+x,^1, ?m 
(3.3.11) 

where the zero- and first-order strains are 

c ( 0 ) _ „ ( 0 ) o(0) _ (0) o (0) _ (1) 
1 — 1 1 ' 2 — 2 2 ' 3 — " 3 ' 

5 , r = « i 2 , + « 2 , 5 ^ = 1 / ^ + 1 1 

*2,2' 

(0) _ „ (0) / I ) 5<°>= i i ^ + i i (0) 
(3.3.12) 
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and 

S2)=u^+2ui0)=0, S®=u®+2u{2)=0, (3.3.13) 

cO) _ ,,(1) , M(l) 

We note that S^ and S® are involved with u^ and w^2), which are to 

be eliminated. S^ and S^ are neglected as an approximation. The 
zero- and first-order electric fields are given by 

^ ( 0 ) = - ^ j 0 ) . E^=-<l>f, Ei0)=-*m, (3.3.14) 

and 

E^=-cj>f, E?=-j$\ E®=0. (3.3.15) 

The zero- and first-order equations of motion and charge are 

TZ +FF =±P'[{h1 -h,_xyuf> + 4 b * k ««], 
7=1 L 

7=1 

TZ -T^+F^=±p'[^^-u^ + ^ l * M . f i « ] , (3.3.16) 

Z>2+Z)(0)=0, 

DS-A ( 0 )+^ ( 1 )=O. 

The zero-order plate constitutive relations are 

D™ =(e$Sf +e<?E<P ) + ($*« +sfEf), 
(3.3.17) 
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where 

I=\ 

1=1 

and 

JL h1 -h2 " h2 -h1 

(1) _ y ,*I "i-l y-I (1) _ Y ("' " ^ \F' 

7=1 Z 7=1 Z 

N h2 h2 

7=1 L 

The first-order constitutive relations are 

D^=(epf+e^Ef) + (e^+e^E<P), 

where 

N U3 U3 N U3 U3 

(2) _ Y (hzhzLXr1
 e

(2) - Y C1 ~ '~l)c! 

ijkl - Z - A I ' 'M' k'J ~ Z-i^ -> ' k'J'-
7=1 J 7=1 J 

(3.3.18) 

(3.3.19) 

(3.3.20) 

(3.3.21) 

Note that in Equations (3.3.18), (3.3.19) and (3.3.21) we have used the 
following material constants after the simpler version of stress relaxation 
(see Equations (2.4.13) through (2.4.15)): 

c1 - r ' - c 1 c' lr' 
cijkl - cijkl t//33c"33£/ ' c3333 > 

ekij~ekij ek33C33ij 'C3333' ( 3 . 3 . 2 2 ) 

<' e1 I c 1 

<33ej33 ' c3333 • 
En — £„ + £ /T>£ .•« / 

Then u^ and u'tp will not appear in the constitutive relations in 

Equations (3.3.17) and (3.3.20). A more sophisticated stress relaxation 
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using r3
(
3
0) = 0 and Tff = 0 to eliminate S^> and SfJ (and hence w<1} 

and uf) can be performed. Two shear correction factors K\ and K2 can 

be introduced by replacing the following zero-order strains: 

^31 ~* K\^i\ » ^32 — > K2^ii (3.3.23) 

to correct the two fundamental thickness-shear resonant frequencies. 
In summary, we have the two-dimensional equations of motion and 

charge (3.3.16), constitutive relations (3.3.17) and (3.3.20), and strains 
and electric fields (3.3.12) through (3.3.15). With successive 

substitutions, seven equations for uf^, u^, 0(O) and 0(1) can be obtained. 
At the boundary of a plate with an in-plane unit exterior normal n and an 
in-plane unit tangent s, we may prescribe 

*£0) or «<°\ rW or u?\ T^ or uf\ 

r « or „ « , T® or „ « , (3.3.24) 

D™ or ^ \ D™ or </>m. 

For a laminated plate, extension and flexure are usually coupled unless 
the plate is laminated symmetrically about its middle surface. 

3.4 A Plate on a Substrate 

A thin film on the surface of a half-space or at the interface between 
two half-spaces is a common structure in device applications. In this case, 
for long waves, the film can be modeled by the two-dimensional 
equations [42], and the half-space(s) by the three-dimensional equations. 
In this section we analyze two problems of this type. 

3.4.1 A Piezoelectric film on an elastic half-space 

First consider a piezoelectric film on an elastic half-space (see 
Figure 3.4.1) [43]. This problem is useful for understanding the behavior 
of piezoelectric actuators. The film is modeled by the equations for the 
extensional deformation of thin plates, and the substrate is governed by 
the equations of elasticity. The film is of ceramics with thickness poling, 
and is partially electroded. The thick lines represent electrodes. The 
substrate is isotropic. 
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*3 
Electrodes 

2h /fvp 

Piezoelectric 
film 

X\ 

-H< la 
Elastic substrate 

• > < -

21 

Figure 3.4.1. A partially electroded piezoelectric film on an elastic 
substrate. 

We study plane strain deformations with Ui = 0 and d/dx2 = 0. The top 
and bottom electrodes on the film are under given applied electric 
potentials ±V/2. Then for the electroded portion we have 0(o) = 0 and 0(1) 

= V/2h. In the unelectroded portions, since 0(O)(±a) = 0 and ^ j 0 ) (± /) = 0 , 

it can be concluded that 0(o) = 0. However, 0(1) remains unknown in the 
unelectroded portions and is coupled to the mechanical fields. Denote the 
shear stress between the film and the substrate by T(X]) for \x\\ < I. Since 
the film is assumed to be very thin, the continuity of the tangential 
displacement at the interface implies that the tangential surface 
displacement of the substrate is also wf'Oe,) . Then we have the 
following relation for the surface strain due to a surface distribution of 
shear stress T [ 4 3 ] 

"I(.I)(X1) = -
2(1- v2) 

7lE r, T(S) 
ds (3.4.1) 

where E is the Young's modulus and v is the Poisson's ratio of the 
substrate. Equation (3.4.1) is from the theory of elasticity. For the 

in the film we have extensional force Tfp 

TW-TKc&W+e&V). (3.4.2) 
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7j, must satisfy the following edge conditions 

ri
(,0)(±0 = 0. (3.4.3) 

The equation of motion of the film is 

r = 7 $ . (3.4.4) 

Integrating Equation (3.4.4) from -/ to JCI, using Equation (3.4.3), we 
obtain 

\X'ir{s)ds = T^\xx). (3.4.5) 

Substituting Equation (3.4.1) into Equation (3.4.2) and the resulting 
expression into Equation (3.4.5), we have the following integral equation 
for T: 

2hc(x2{\-v2) ri T(S) n . . , 2hc(x2{\-v') ri 
r(s)ds + —- - ds 

TJE J-/ xx-s (3.4.6) 

= 2he?x<f>m(xx), \xx\<l. 

For the electric potential we have 

m [V I2h, I x, |< a, 
<j>m = \ i l l ' ( 3 _ 4 7 ) 

[unknown, a <\ xx \<l, 

where 0(1) in the unelectroded portions is part of the unknowns and has to 
be obtained by solving simultaneous equations. The additional equation 
for determining (j)m takes the following form with the substitution of 
Equation (3.4.1) into Equation (3.1.14) and ^'replaced by h: 

2^ 2he^2(l-v') e' r{s) I -ds 
KE • I " (3.4.8) 

91,3 

- —ex
p
x<l>fx - 2hsy{X), a <| x, |< /, 

which is coupled to %. Equation (3.4.8) is an integro-differential equation 
to which we need to impose the following boundary conditions: 

f\±d) = VI2h, $\±l) = 0. (3.4.9) 
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We have obtained a pair of coupled integro-differential equations (3.4.6) 
and (3.4.8) for determining t(x\) and <j)m(x{), with boundary conditions 
(3.4.9). Equation (3.4.8) is over the region of the unelectroded portions 
of the film only, where (j)m is unknown. 

3.4.1.1 Rigid substrate 

First consider the special case of a fully electroded film on a rigid 

substrate. We have w,(0) = 0. Because of symmetry we only consider half 

of the film with 0 < JCI < /. For a fully electroded film with a = I, we have 

0m=V /2h over the whole film. Equation (3.4.2) then implies that the 

film extensional force T^ has a constant value of e-f, V along the film. 

Then Equation (3.4.4) further implies that the shear stress T is zero under 

the film. However, Equation (3.4.3) requires that 7j(,0) must vanish at 

both ends of the film. This is possible only when two concentrated shear 

forces of equal magnitude e%x V and opposite in direction are present at 
both ends of the film. Mathematically, the shear stress distribution can be 
represented by 

t{xx) = -e!;xV[8{xx -l)-S(xx + /)] , (3.4.10) 

where 8(xx) is the Dirac delta function. 
A slightly more general case is when a partially electroded film is on 

a rigid substrate. In this case from Equations (3.4.6) and (3.4.8) we have 

2h3 (3.4.11) 

for which the boundary conditions in Equation (3.4.9) still apply. From 
Equation (3.4.11)2 and Equation (3.4.9), the following solution for 0(I) 

can be obtained 

,m f V/2h, 0<xx <a, 
<j)() =\ (3.4.12) 

[G exp[-^(xx - a)] + H exp[£(x, - a)], a<xx<l, 
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where 

, 2 3 i c V 
h\ eft' 2h[l + exp(-2^b)Y 

(3.4.13) 

H-
2/?[l + exp(-2#>) 

exp(-2£Z>), 

and b = l-a. Substitution of Equation (3.4.12) into Equation (3.4.1 l)i 
gives the shear stress distribution 

t-< 

0, 0 < xx <a, 

<& {-exp[-£(*, -a] 
1 + exp(-2#>) 

+ exp(-2£fr)exp[£(jt, -a]}, a<xx<l. 

(3.4.14) 

Under the electroded portion there is no shear stress. In the unelectroded 
portion the shear stress decays exponentially with i(0 = 0- The important 
difference between Equations (3.4.14) and (3.4.10) is that one predicts a 
distribution of finite shear stresses while the other has a singular 
distribution of the delta function. This shows the advantage of partially 
electroded actuators in reducing stress concentration. The total shear 
force predicted by Equation (3.4.14) can be obtained by integrating the 
shear stress over the unelectroded region (a, /), which yields 

Q = 
e$xV 

1 + exp(-2#>) 
[-1 + 2exp(-#>) - exp(-2#>)]. (3.4.15) 

For the equations of a thin film to be valid in the unelectroded portion, 
the length of the unelectroded portion b has to be much larger than the 
thickness 2h. Then it can be seen from Equation (3.4.13)i that in this case 
e x p ( - ^ i ) « 1. If we neglect exp(-<f#) compared to one in the above 

expressions, we obtain the following simpler and physically more 
revealing expressions: 

i(D Pl> = 
VI2h, 0 < xx <a, 

2h 
exp[-^(x, - a)], a<xx <l, 

(3.4.16) 
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T = < 
o, 0 < JCj < a, 

• ef,i;V exp[-£(jtj - a)], a < xx < I, 
(3.4.17) 

Q = -efiV. (3.4.18) 

The shear stress distributions given by Equations (3.4.10) and (3.4.17) 
are shown qualitatively in Figure 3.4.2 where a minus sign has been 
dropped. The figure shows that the shear stress distribution under a 
partially electroded film is much less concentrated than a fully electroded 
film. From Equation (3.4.18) we can see that the total shear force is 
about the same as Equation (3.4.10), being equal to the tension (or 
contraction) force in the unelectroded portion of the film. 

(Delta function) 

a = I 

Figure 3.4.2. Shear stress distribution under a piezoelectric film on a 
rigid substrate, a = I: fully electroded. a < I: partially electroded. 

3.4.1.2 Compliant substrate 

Next consider the special case when the piezoelectric film is fully 
electroded and is much stiffer than the substrate. With the introduction of 
the following small, dimensionless parameter: 

A= „ E , , (3.4.19) 
cf,2(l-v2) 
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and the change of the integration variable s = It, Equation (3.4.6) can be 
written as 

-f —dt = Wx?--X±-¥ f{t)dt, (3.4.20) 
n J-i q -1 2h 2h J-i 

where we have denoted fif) = T{li), and g = xjl. We now seek the 
following perturbation solution: 

/ ( 0 = / ( 0 ) ( 0 + V 0 ) ( 0 + - - (3-4.21) 

Substituting Equation (3.4.21) into (3.4.20), we obtain the following 
zero- and first-order problems: 

1 r1 fm(t) 

n U q~l (3.4.22) 

nU g-t
 3l2h 2h J-l J 

These equations are analytically solvable. Equation (3.4.22)i is 
homogeneous. A physically meaningful solution to Equation (3.3.22)i is 

/ ( 0 ) ( / ) = 0 , which represents the situation that the substrate is 
mechanically not resisting the deformation of the film. The first-order 
solution from Equation (3.4.22)2 takes the form 

n J-' \ \-q q-t 2h 

or 

r(*,) = -
^ 2 ( 1 

—ef^iC & 4 - U * . (3A24) 
v2) n2hxS-i \l2-x2

x xx-s
 K ' 

It can be verified that Equation (3.4.24) is an odd function and is singular 
at JCI = ±1. The integration of T over (0,1) is still finite to give the total 
shear force. / ( 1 ) ( 0 m Equation (3.4.23) is normalized and shown in 
Figure 3.4.3. Comparison of Equations (3.4.24) and (3.4.10) shows that 
for the case of fully electroded actuators, the shear stress distribution is 
more concentrated when the substrate is stiffer than the film. 
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Figure 3.4.3. Normalized shear stress ^~('(g)/(-e^V/2h). 

3.4.1.3 Elastic substrate in general 

In general we need to solve coupled integro-differential equations 
(3.4.6) and (3.4.8). We divide the domain into elements and solve the 
equations numerically. First we re-write Equations (3.4.6) and (3.4.8) as 
follows: 

f z(s)ds + A$ - ^ - < & = ef,<B(jt), | J C | < / , (3.4.25) 
1-1 i-l x — S 

and 

B( ^-ds = OJ>,u(x)-ef3(S>ix), a<\x\<l. J-' x - s 

where we have introduced the following for simplicity: 

. 2hc^2{\-v2) D 2he^2(l-v2) 
A= , B = — 

KE TZE 

h1 

C = —e{[, <D = 2/^ ( 1 ) , x = xv 

(3.4.26) 

(3.4.27) 
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Then, we divide the whole interval (-/, /) into small segments with 
length A;, i = 1,2,3,...,N, where N (= 2Na+2Nb) is the total number of 
the segments, 2Na is the number for the electroded portion, and 2Nb is the 
number for the unelectroded portions (see Figure 3.4.4). One node is 
placed on each element. 

1 2 3 
/ ' 

/ .. T V - 1 
, | . | . | . | . | . | . | . | . | . | . | » l ' l » l » l * l » l » l * l » l » l ' l « l » l « l « l 

i_ 
Nb 

7<L .0 

Na 

a I x 
"V 

Nb 

Figure 3.4.4. Discretization of the domain (-/, I) into N(= 2Na+2Nb) 
small segments (elements). 

The shear stress and electrostatic potential are approximated by 
undetermined constants over each element. Let x = xt (i.e., at node i) for 
/ = 1, 2, 3, ..., N, then the two integrals in Equation (3.4.25) can be 
discretized as: 

j j r(s)ds = X jA
 T^ds = HTJAJ (3.4.28) 

J-i x.-s *ri JA, v -,c *ri JA, X,-S J 

xt -s 

N 

= I> 
7=1 

MJAJ X,-S 

X: ~S 
7 = I l n t i = 

7=1 
}*i 

7=1 kJ X,S 

XI-(XJ-\AJ) 

xi-{xJ+\kJ) 
TJ> 

(3.4.29) 

f 1 in which r, =T(X ) . The singular integral ds can be shown 
JA , r — s 

to vanish in the Cauchy-principal value sense and thus is excluded from 
the summation. Using the above results, we can write the discretized 
form of Equation (3.4.25) as: 
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A5>;+^I l n 
7=1 

i = 1,2,3,..., AT, 

7=1 * , - ( * , + 7 A ) 
-ap 'Si*,* 

(3.4.30) 

where <D, =0 ( JC , ) and a uniform length for all the elements has been 

assumed (i.e., Ay =A , y' = l,2,3,...,Af ). Notice that 0>Nb+l =<&Nb+2 

= V, as given in Equation (3.4.7). There are a total of N O Nh+2NC 

equations in Equation (3.4.30). Applying the central difference scheme, 
we have 

<-\n(*,) = 
<->/+!-20,+<-\_i 

(3.4.31) 

i=2,3,...,Nb,Nb+2Na+\,...,N-\. 

Thus, the discretized form of Equation (3.4.26) is found to be 

*5> 
7=1 
7'*' 

* < - ( * ; — 2 A ) 

* , - (* ;+1 A) 

i = 2,3,...,Nb,Nb+Na+l,...,N-l, 

T V = ^ - ( < D , + 1 - 2 0 , . + < D M ) - ^ 0 , ; 

(3.4.32) 

in which 

0> w*+i (D W*+2AT, = K. (3.4.33) 

from condition (3.4.7) or (3.4.9)i should be applied. There are only 
2Nb -2 equations in Equation (3.4.32). Two more equations are found 
by enforcing the zero-slope boundary condition in Equation (3.4.9)2 

using the finite difference, that is, 

<D, 0>2, Ow_! O, (3.4.34) 

There are a total of N + 2Nb equations in Equations (3.4.30), (3.4.32) 
and (3.4.34), which are used to solve for the N unknowns 
r, (i = 1,2,3,..., N) and 2Nb unknowns O, , (/* = 1,2,3,..., Nb, 
Nb+2Na+\,..., N-l, N). Equations (3.4.30), (3.4.32) and (3.4.34) can be 
written in a matrix form and solved for r and O together or solved for 
r and <t> separately using partitioning of the whole matrix. For 
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numerical results, we consider PZT-7A for the piezoelectric film. For 
geometric parameters, we choose / = 0.1m and h = 0.0025 m. The 

substrate is made of steel ( £ = 2.0xl0nPa, v = 0.3). Numerical tests 
show that N=200 is sufficient and is thus used for all the following 
calculations. 

Figures 3.4.5 and 3.4.6 show the results for the shear stresses and 
electric potentials, respectively, with the electroded region of three 
different sizes. It is observed that the location of the peak value of shear 
stress moves towards the edges of the film when a increases, as expected. 
Since the shear stresses decay so rapidly, they essentially do not feel the 
ends of the film in the cases shown with almost the same shear stress 
distributions concentrated at different locations. Figure 3.4.5 suggests 
that if a partially electroded actuator is used for the purpose of reducing 
shear stress concentration, only very small portions in the order of about 
five times the film thickness near the ends of the actuator need to be left 
unelectroded. This provides some guidance for design. 
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Figure 3.4.5. Shear stress distribution for different sizes of 
the electroded area. 
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Figure 3.4.6. Electric potential distributiosn for different sizes of the 
electroded area. 

From the numerical data of Figure 3.4.5, it is observed that the shear 
stresses under the electrodes are not zero, but much smaller in value 
compared with the peak values near the edges of the electroded area. To 
illustrate this, the distributions of the shear stresses under the electrode 
are plotted in Figure 3.4.7 for three substrates with decreasing Young's 
moduli. The shear stresses under the electrode are larger as the substrate 
becomes softer, as also suggested by the comparison of Figures 3.4.2 and 
3.4.3. However, the values of the shear stress under the electrode are still 
several orders smaller than the overall peak values of the shear stress 
right outside the edges of the electrode. Practically the shear stress under 
the electrode can be neglected for many purposes. Since the shear stress 
under the electrode is much smaller than the peak values right outside the 
electrode, the shear stress is discontinuous at the ends of the electrode. 
The discontinuity in the shear stress distribution is related to the thin film 
model used. 
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Figure 3.4.7. Distributions of the shear stresses (xlO ) under the 
electrodes. 

3.4.2 Piezoelectric surface waves guided by a thin elastic film 

Consider the propagation of long, anti-plane (shear horizontal or SH) 
surface waves over a piezoelectric half-space carrying a thin, non-
piezoelectric dielectric film (see Figure 3.4.8). The ceramic half-space is 
poled in the x3 direction. 

Free space 

Dielectric 2h 
A 

Xi 

Polarized ceramics Propagation 
direction 

xi 

Figure 3.4.8. A ceramic half-space with a dielectric film. 
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For the ceramic half-space, for motions of u3(xx,x2,t) and </>{xx,x2,t), 
the governing equations are [12,9] 

(3.4.35) 

and 

where the 

c44V2«3 =pii3, 

V: 

^23 = 

A = 
D2 = 

piezoelectrically-

r> — r* 4 

*11 

: C44M3,2 +e\5lrY,2' 

Cwuxx+ex5yx, 

•-suy/a, •stiffened shear constant is 

2 

defined by 

(3.4.36) 

(3.4.37) 

(3.4.38) 
SUCA4 

For a surface wave solution we must have 

w 3 ,^->0, x2-»+oo. (3.4.39) 

Consider the possibility of solutions in the following form: 

M3 = Aexp(-^2x2)exp[i(^xxx -°)t)]> 

y/ = Bexp(-^xx)exp[i(^xxx -at)], 
(3.4.40) 

where A and B are undetermined constants, and £2 should be positive for 
decaying behavior away from the surface. Equation (3.4.40)2 already 
satisfies Equation (3.4.35)2. For Equation (3.4.40)i to satisfy Equation 
(3.4.35)i we must have 

cu($-g) = pa>\ (3.4.41) 

which leads to the following expression for <fj2: 

&=ti - ̂ - = £ a - 4 ) > ° - <3-4-42) 
C44 VT 
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where 

2 co 
V = — r 

2 C. 
V r • = 

44 

P 
(3.4.43) 

The following are needed for prescribing boundary and continuity 
conditions: 

</> = [Bexp(-^x2) + -^-Aexp(-^2x2)]exp[i(^x: -cot)}, 

(3.4.44) T23 = -[.4c44£2exp(-£2x2) 

+ ei5B^ exp{-%xx2)}exp[i{Zxxx -cot)], 

D2 = £uB^exp(-^x2)exp[K^xx -cot)]. 

Electric fields can also exist in the free space of x2 < -2h = 0, which 
is governed by 

V V = 0, x2< 0, 

—00. <f> - > 0 , x 2 

A surface wave solution to Equation (3.4.45) is 

^ = Cexp^jCj )exp[i(£lxl - cot)], 

(3.4.45) 

(3.4.46) 

where C is an undetermined constant. From Equation (3.4.46), in the free 
space 

Di = -^o^iC exp(^x2 )exp[/(^1 ̂ j - cot)]. (3.4.47) 

The film is assumed to be very thin in the sense that its thickness is 
much smaller than the wavelength of the waves we are interested in. We 
use a prime to indicate the elastic and dielectric constants as well as the 
mass density of the film. Consider a film of a cubic crystal with m3m 
symmetry. The elastic and dielectric constants are given by 

fc' 

C12 

C12 

0 

0 

0 

0 

0 

0 

u12 

c 1 2 

c'„ 
0 

0 

0 

0 

0 

0 

C44 

0 

0 

0 

0 

0 

0 

C44 

0 

0 

0 

0 

c44y 

fcn 
0 

0 

0 ^ 

0 (3.4.48) 
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(3.4.49) 

For the film, we use the two-dimensional plate equations. This approach 
was used in [42]. The lowest order effects of the film are governed by the 
zero-order equations for extension. We have 

TZ + T2b (x2 = 0) - T2b (x2 = -2h) = Ip'huf, 

D™ + D2 (x2 =0)-D2 (x2 =-2h) = 0, a,b = 1,3. 

The constitutive relations for the film are 

y(0) _ rP c(0) 

DT=4E?\ r,* = lA5, 

where 

(3.4.50) 

cp„ = c'rs ~c'ncZXc'vs, v,w = 2,4,6. (3.4.51) 

The fields in the film are 

u3=Aexp[i(^xx-o)t)l 

0 = Cexp[i(4iX\ - ojt)]. 
(3.4.52) 

Equation (3.4.52) already satisfies the continuity of the mechanical 
displacement between the film and the ceramic half-space, and the 
continuity of the electric potential between the film and the free space. 
From Equation (3.4.50) we obtain: 

= Hiefc&A exp[i(£*, - cot)], (3 4 53) 

D[0) = 2he'nEl=-2he'njil 

= -2he'niJ;xCQxp[i(%xxx -col)]. 

Substitution of Equations (3.4.44), (3.4.46), (3.4.47) and (3.4.53) into the 
continuity condition of the electric potential between the ceramic half-
space and the film, Equation (3.4.49)i for 6 = 3, and Equation (3.4.49)2 

yields 
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B + ^-A = C, 

-c^A-^-(AcMZ2+el5B^) = -p'<D2A, (3.4.54) 

s^C + ^-^B^+s^Q^O, 
2« 

which is a system of linear, homogeneous equations for A, B and C. For 
nontrivial solutions the determinant of the coefficient matrix has to 
vanish 

;15 

pW-ctef-ML 
2« 

1 

«isft 

1 

0 
2h 

£\\h\ £dh\ , r2 
+ EUhl 2h 2h 

= 0. (3.4.55) 

which determines the dispersion relation, a relation between co and £i, of 
the surface wave. In terms of the surface wave speed v = <»/£,, Equation 
(3.4.55) can be written in the following form: 

VVr2 

•1 ^ 2 / ^ - l -4+*, 2
5 c 4 4 \ v\ 

v15 

£u £u 

(3.4.56) 

where Equation (3.4.42) has been used, and 

,.'2 
C44 T2 _ _ f l 5 

— r » ''is _ -
(3.4.57) 

When h = 0, i.e., the dielectric film does not exist, Equation (3.4.56) 
reduces to 

jfc4 

(l + £u/£0)
2 

(3.4.58) 
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which is the speed of the well-known Bleustein-Gulyaev piezoelectric 

surface wave. When k^-Q, i.e., the half-space is nonpiezoelectric, 

electromechanical coupling disappears and the wave is pure elastic. In 
this case, Equation (3.4.56) reduces to 

yv'T
2 1 ^ 2 / ^ - l - - = 0 , (3.4.59) 

'44 

which is the equation that determines the speed of Love wave (an anti-
plane surface wave in an elastic half-space carrying an elastic layer) 
in the limit when the film is very thin compared to the wavelength 
(&A « 1). 
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Chapter 4 

Nonlinear Effects in Electroelastic Plates 

In this chapter we consider the effects of initial or biasing fields in an 
electroelastic plate. In this case the three-dimensional equations are 
linear (see Section 3 of Chapter 1), but they can only be derived from the 
nonlinear equations. We will also study nonlinear effects in an 
electroelastic plate in thickness-shear vibrations with relatively large 
amplitude. 

4.1 Plates under Biasing Fields 

Two-dimensional equations for elastic and electroelastic plates under 
biasing fields were studied in [44-47]. The derivation below is from [46]. 
Consider an electroelastic plate in the reference configuration with the X3 

axis along the plate normal, as shown in Figure 4.1.1. 

X3 

2h •X, 

Figure 4.1.1. The reference configuration of an electroelastic plate and 
coordinate system. 

4.1.1 First-order theory 

For a first-order theory we make the following expansions of the 
incremental displacement and electric potential: 

168 
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4>l =<pm(x,,x2 ,o + x3</>m(X,,x2,t), 

where wf and w£2) will be either eliminated by stress relaxation or 

neglected later. From Equation (4.1.1) we calculate the displacement 
gradients and electric field as 

(4.1.2) 

where 
f/(0) _ M(0) f / (0) _ (0) f / (0) (1) 
^11 ~ u\,\ ' ^12 — wl,2 ' ^13 Ml 3 

21 — 2 1 ' 22 — 2 2' 23 — 2 ' 

f/(0) _ M(0) f /(0) _ (0) f / (0) _ (1) 
u 3 1 — "3 ,1 » ^ 3 2 — "3,2' u 3 3 — " 3 ' 

21 — 2 1 ' 22 — 2 2 ' 23 — £t4y = U j 

£/Jl>=i/g=o, ^ = „ ( ; ) = o , t/3
(?=2«|2), 

E . ^ - ^ , £f=-^(
2

0), <E^=-^l\ 

(4.1.3) 

(4.1.4) 
',i > 

In Equation (4.1.3), as an approximation, we have neglected u^\, u3\, 

u\2) and w2
2) • Substituting Equation (4.1.1) into the variational 

formulation in Equation (1.3.12), for independent variations of Su\°\ 

Su<£\ Suf\ Su\l\ Su2\ S<f>{0) and # ( 1 ) , w e obtain the following two-

dimensional equations of motion and electrostatics: 

&^-K%+FV = *»£-u*\ a = 1,2, ( 4 L 5 ) 

©W + © (0)=0, 

< ^ - < } + c D ( 1 ) = 0 , 
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where we have introduced an index convention that index A assumes 1 
and 2 but not 3. Equations (4.1.5)i for a = 1, 2 are the equations for 
extension, and for a = 3 the equation for flexure. Equations (4.1.5)2 are 
for shear in the X\ and X2 directions. In Equation (4.1.5) the plate 
resultants and surface loads of various orders are defined by 

{*£>,©£>} = f {K'Ka,cDl
K}X"3dX3, 

J~h (4.1.6) 
F^=[X"3Kla]

h_h, <DW =[X;<D\£h, 11 = 0,1, 

where K^l represent plate extensional and shearing forces, and bending 
and twisting moments . For thin plates we make the following stress 
relaxation: 

K\,=G„LrurL-RLilT}L=Q. (4.1.7) 

From Equation (4.1.7) we can solve for W33, with the result 

"3,3 = — \G^LruyL -G3333M33 -RL33E
l
L]. ( 4 . 1 . 8 ) 

^3333 

M33 has been eliminated from the right hand side of Equation (4.1.8) 
because when L -y = 3 the two terms containing W33 cancel each other 
out. Substituting Equation (4.1.8) back into the three-dimensional 
constitutive relations in Equation (1.3.6), we obtain 

(4.1.9) 

where the relaxed constants are 

^KccLy ~ ^KccLy ~ &Kaii^i^Ly ' ^3333» 

RKLy = RKLy ~ RK33G33Lr /G3333, (4.1.10) 

LftL — LKL + ^AT33^L33 ' ^3333-

In Equation (4.1.9) £33 = 0 is satisfied and its right hand side does not 
contain 1/3,3. From Equation (4.1.6)1, with the substitution of Equations 
(4.1.9) and (4.1.2), we obtain the plate constitutive relations as 
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K(S>) _ a(f>) i-r(O) , W l ) TJ(\) _ R(0) ^ ( 0 ) _ n(l) - (1) 
A K a -KjKaLyUyL + {JKaLyUyL ^LKa^L ^LKa^L > 

K(Xi - Gm 7/(0) , GP) TTW _ D ( D «r(0) _ D ( 2 ) C ( 1 ) 
^Ka ~ UKaLyUyL + UKaLyUfi ^LKa^L ^LKa^L » 

(4.1.11) 

^KLywyL T ^ K L y ^ y L 

where 

{G&r,*g,Z<5>> 
,* _ _ _ „ (4.1.12) 

= lh {GKaLr,RKLy,LKL}X3"dX3, n = 0,1,2. 

Physically, G j ^ represent the plate flexural and extensional stiffness, 

etc. Because of the use of the relaxed material constants in Equation 

(4.1.9), u® and u^ do not appear on the right hand sides of Equation 

(4.1.11). A more sophisticated stress relaxation using K^* = 0 and Ky 

= 0 to eliminate U$ and U^l (and hence u^ and w|2) ) can be 
performed. Equation (4.1.11) shows that extension and bending may be 
coupled due to biasing fields. In a plate theory only the moments of 
various orders of the biasing fields matter, not the exact three-
dimensional distributions of the biasing fields. Shear correction factors 
may be introduced but they are not pursued here. 

In summary, we have obtained the two-dimensional equations of 
motion and electrostatics (4.1.5), constitutive relations (4.1.11), and the 
displacement gradients (4.1.3) and electric fields (4.1.4). With successive 
substitutions, Equations (4.1.5) can be written as seven equations for the 

seven unknowns of w,(0), uf^, uf*, Wj(1), u^, <f\ and 0(1). To these 
equations the proper forms of boundary conditions can be determined 
from the variational formulation in Equation (1.3.12). At the boundary of 
a plate with a unit exterior normal N and a unit tangent S, we need to 
prescribe 

(4.1.13) A-NN 

(D ( 0 ) 

or 

or 

or 

K ( 0 ) 
UN > 

«$>, 

#<»>, 

Km 

(Dm 

or 

or 

or 

M ( 0 ) 

w(1) 

"S ' 

<?>m. 

K(0) or w(0) 

" 3 » 
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4.1.2 Buckling of ceramic plates 

One application of the equations for a plate under biasing fields is 
the buckling analysis of thin plates. For the classical description of the 
buckling phenomenon, the electroelastic counterpart of the initial stress 
theory in elasticity is sufficient, which is a special case of the theory for 
small fields superposed on a bias. The effective material constants of 
such a theory are given in Equation (1.3.20). We perform buckling 
analysis of a few piezoelectric plates and bimorphs made from polarized 
ceramics [46]. Three cases corresponding to Figure 4.1.2 are considered. 
We limit our discussion to plane strain analysis with u2 = 0 and d/dX2 = 0. 
For all three cases the two major surfaces of the plate at X3 = ±h are 
traction-free and are unelectroded, with vanishing normal electric 
displacement. The plates are mechanically simply supported at their end 
faces at X\ = 0 and X\ = I. The electrical end conditions will be specified 
later in each specific case. The two ends of the plates are loaded by the 
following axial force per unit length in the X2 direction, which is 
responsible for the biasing deformation: 

p = 2hK°n. (4.1.14) 

\ x i 

1 

> 
2h 

/ 
* P 

x, (b) 

Xi P 

.X 

$ h 

tyh 

(a) 

A P 

v 
/ 

X, P 

Q h 
^ h 

t P 
I P 

X, P 

(c) 

Figure 4.1.2. Simply supported ceramic plates of length / and 
thickness 2h. 
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(4.1.15) 

4.1.2.1 A single-layered plate 

Consider a ceramic plate poled in the X\ direction as shown in Figure 
4.1.2(a). The material matrices are in Equation (2.3.45). The plate is 
electroded at its two end faces at X\ = 0 and X\ = I. The electrodes are 
shown by thick lines in the figure. When the initial load p is being 
applied, the end electrodes are shorted to eliminate the initial electric 
field E\ which otherwise would exist. Once p is already loaded, there 
exist initial charges on the end electrodes. The electrodes are then opened 
during the incremental flexural deformation and there are no incremental 
charges on these electrodes. Therefore for the incremental fields the 
electric displacement vanishes at both ends. The governing equations for 
the incremental fields take the form 

G(0) w(0) + G(0) um +R(0)d>m = 0 
"1313M3,11 + L r1331M l , l + A 3 1 3 r , l ~ u> 

Offi -*«> -4W -#Wt+4^(1) -o, 
and the boundary conditions are 

«<°>=0, X ,=0 , / , 

Ki?=G{?uuU+R^=0, Xx=0,l, 

<D[0) = -Ihe^f = 0, Xx = 0, /, 

0 1 « = O « - ^ V J > = 0 , Xl=0,l, 
where 

C = 2 ^ 4 4 + p, GZ = G<?>3 = G3
(?>, = 2te44, 

G'ft = i h2 (2hcx + p), tf <°> = 4°> = 2te15, 

RV>-lh3e rm--h3? rm-2hr (4.1.17) 
- " i l l _ ~ " e 3 3 ' M l - ~ - " f c 3 3 > ^ 3 3 - z " £ l l > 

2 2 
— _ M3 — _ ^31^31 — _ ^31 
C33 _ C33 ' e 3 3 ~ e 3 3 ' £33 ~ ff33 H • 

C l l C l l C l l 

(4.1.16) 
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In Equation (4.1.16)2 the bending moment K$ is coupled to 

(E,(1) = -<j>^ through e33 as expected. Furthermore, for the transverse 

shear force we have K$? = G^\3u^ + G^u^ + R^m which is L13 

coupled to £3
0) =-<j)(-X) through e\5 as expected. Equations (4.1.15)3 and 

(4.1.16)3 show that 0(o) is a constant which can be taken to be zero. Let 

i40) = A sin £T,, Wl
(1) = B cos £Y,, 

^ ( 1 ) =Ccos^r„ 
(4.1.18) 

where A, B, and C are undetermined constants and <f = id I. The boundary 
conditions in Equation (4.1.16) are satisfied automatically. Then the 
buckling load can be determined from the following equations obtained 
by substituting Equation (4.1.18) into Equation (4.1.15)1,2,4: 

:2n(0) ;(0) ( ° ) r - 1 

^ 3 % ^ + C ^ i +G3<8I)2> + tf2J?ffi +4°1)C = 0, (4.1.19) 

For non-trivial solutions of 4̂, 5, or C, the following condition must be 
satisfied 

<?2G(0) 

h "1313 

£ ^ 3 

^ 

#7(0) 
S"l331 

<52G(2) + G ( 0 ) 

S "1111 + <J3131 
<52/?(2) + /? ( 0 ) 

£ -"ill + ^ 3 3 1 

&& 

*2*ffi+*Si 
- ( ^ + ^ ) 

= 0, 

which can be written as 

ampm2+bmpm+cm=0, 

where 

(4.1.20) 

(4.1.21) 

PiX) = 
2hc 

X0 - n 
33 

h 
a - A Q , 

".(» A0+-
' 33 

(A0+l)c44 + V l 2 5 + ( V 3 3 + e 1 5 ) 

£•[, +/ t0£'33 

.0) - . 

' 3 3 
/ l 0

c 44 + 
A i ^ i s "r AnC-i i C-i-iC , 0 c 3 3 c 3 3 i - 4 4 

fu + / l 0 £ ,
3 3 

(4.1.22) 
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Since Xo « 1 for a thin plate, it follows from Equation (4.1.22) that 
(bm)2 »4amcm and bm»am for thin plates. Hence, an 
approximate solution to Equation (4.1.21) can be found as 

p
 bm 

f amcv)\ 
1 + -

(* ( 1 ) ) 2 y 
(4.1.23) 

Our main interest is the effect of piezoelectric coupling on the buckling 
load. To see this more clearly, we let c44 —> °° in Equation (4.1.23), which 
effectively eliminates plate shear deformations and the related 
piezoelectric coupling through e15. We then expand Equation (4.1.23) 
into a polynomial of Xo that is small. This leads to 

pm*-A0(l + A0P), P=ei3/Qc33eu), (4.1.24) 

where k2 may be considered as an electromechanical coupling factor. 

Under our notation -Ao is the dimensionless buckling load from an elastic 
analysis without considering the piezoelectric effect. The second term on 
the right hand side of Equation (4.1.24)i represents the effect of 
piezoelectric coupling due to e33. This additional term is proportional to 

k2, which ranges from 0.1 to 0.6 for most polarized ceramics. Since 

A:2 is multiplied by Ao, which is a small number, the piezoelectric 

modification on the buckling load is a small addition to the elastic 
buckling load. Hence an elastic analysis without considering the 
piezoelectric effect gives a conservative estimate of the buckling load. 

4.1.2.2 A bimorph with in-plane poling 

In this case we consider a ceramic bimorph as shown in Figure 
4.1.2(b). The end faces are unelectroded. The governing equations for the 
incremental fields are 

G(0)
 M(0) + Gm

 M(1) - 0 
"1313 "3,11 + ( J 1 3 3 1 " 1 , 1 _ u> 

Gf&nff, + B&OS ~G3%«S> - G<?3><» =0, 

4WiV-4°3V(,) = o, 
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with the following boundary conditions: 

,(°) 
:(2) „(D (DwlW - i ^=c?, iMy+^wr=o, *i=<w 

<D (0) 

w y - w j = ° . î=o,/, 
(4.1.26) 

where the plate material constants are as in Equation (4.1.17) plus 

Rm = h2e 33- (4.1.27) 

In Equation (4.1.26)2 the bending moment K$ is coupled to 

<£• (°) - _ M « » ^ I J through e33 as expected. We note that Equations (4.1.25)4 

and (4.1.26)4 imply 0(1) = 0. Let 

uf]=A sin £Yi, Ml
(1) = 5 cos £r,, 

/ ^ - D C O S ^ , 
(4.1.28) 

which satisfy the boundary conditions in Equation (4.1.26) when £ = nil. 
Eliminating 0(O) from Equation (4.1.25)2 and Equation (4.1.25)3, and 
substituting Equations (4.1.28)i>2 into the resulting equation and Equation 
(4.1.25)i, we obtain 

£2G{3V + ^ ( 3 V = 0, 

&£U + {? [Gffl, + (Iff )-' tfffi2 ] + G% }B = 0. 

For nontrivial solutions of y4 and 5, the following must be true: 

(4.1.29) 

G(o) 
"1331 

or 

£ G(0) 

h "1313 

S"3113 S L " l l l l + < A l J -"ill J + "3131 

fl(2)^(2)2+fe(2)-(2)+c(2)=() 

= 0. (4.1.30) 

(4.1.31) 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



Nonlinear Effects in Electroelastic Plates 111 

where 

P(2) 

",(2) -

2hc a 
(2) _ 

H)' 
33 

ftW=yL+ — '0 ^ -
C33 

3 _ 2 __j 
( / l 0+l)c 4 4+-/ l 0e 

33 f33 
(4.1.32) 

,(2) 

'33 

1 It ' — 2 1 
•-0M4 L0 t-44o33c33°33 

An approximate solution to Equation (4.1.31) is given by 

„(2) ( 

? P ) -
6<2> 

1 + 
(6 (2 ))2 

(4.1.33) 

Letting C44 -^ «> in Equation (4.1.33) and expanding the resulting 
expression into a polynomial of Xo, we have 

-M) 3 n 
* - ^ 0 0 + T * 3 3 )> ^33 = g33 / ( C 3 3 f 33 ) • (4.1.34) 

Comparing Equation (4.1.34)! with Equation (4.1.24)l5 we notice the 
important difference that in Equation (4.1.34)i the piezoelectric 
modification on the buckling load is not multiplied by the small number 
Ao. This is because in Equation (4.1.15) the plate piezoelectric coefficient 

(i) 
is R^i is proportional to h . However, in Equation (4.1.25) R\ 

proportional to h2 and it is the squares of the piezoelectric coefficients 
that appear in the buckling loads. Therefore the piezoelectric effect on 
the buckling load is much stronger in Case (b) than in Case (a). 

4.1.2.3 A bimorph with thickness poling 

The third case is a ceramic bimorph as shown in Figure 4.1.2(c). The 
plate is electroded at X\ = 0 and X\ = I, with shorted and grounded 
electrodes. The governing equations take the following form: 
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G(0) w(0) + G(0) w(1) + Rm</>(1) - 0 
Lr1313M3,ll +*J1331Ml,l +Km<P,U _ U > 

C M , -G3
(?uy -««,w+[*,<& - * » = ° > 

The boundary conditions are 

M(°>=0, X , = 0 , / , 

^n )=G1
(
1

2i ),«S )+A2e3^ (1)=0> X , = 0 , / , 

0<°>=O, X , = 0 , / , 

^ > = 0 , X , = 0 , / , 

(4.1.35) 

(4.1.36) 

G ( 2 ) 
^1111 

G(0) 

^1331 

DO) 
•"311 

cii = 

*33 = 

= U2(2hcn + 

_ ^ 3 1 1 3 _ ^3131 

- fc2e Z(0) -
" K 3 1 ' ^11 

C l l _ C 1 3 ' C33> 

£ 3 3 + e 3 2 3 / c 3 3 -

P), G®3 

i = 2/zc44, 

= 2fc44 + p, 

D(D 
•"113 

2/ , r . r(2) _ 

e31 = e31 -e33< 

= 

2 
3 

' 31 

A 131 

/ ? 3 f f u , 

/c33» 

A2.15 

J-(O) 
-^33 2hs33, (4.1.37) 

In Equation (4.1.36)2 the bending moment K^ is coupled to 

(E3
(0) = -<j>m through e31 as expected. In this case 0(o) is zero. We let 

ui0) = A sin EC., w,(1) = B cos £r, , 
(4.1.38) 

<f>m=C sin D{u 

which satisfy the boundary conditions in Equation (4.1.36). Substituting 
Equation (4.1.38) into Equations (4.1.35)^2,4: 

^ G ^ + ̂ V + ̂ ffiC^O, 
tGV\3A + (Z2Gtfu + G3%)£ + £(*1

(
3
0i - < ) C = 0, (4.1.39) 

?B®A + £(*g> - < ) * - (£2Z<2> + l£> )C = 0. 
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For nontrivial solutions of A, B, or C, the following condition must be 
satisfied: 

£ 2 G ( 0 ) 
^ ( 0 ) 

1313 V-M331 
(0) e 2 ^ ( 2 ) , r(0) 

or 

where 

« 3 

^3% ^Gfft+G3% - W ? , - ^ , ) 

^ 3 -^3 (1 )
1-^ )

1) - ( ^ ^ + 4 ) ) 

a ( 3 y 3 ) 2 + i ( 3 ) - ( 3 ) + c ( 3 ) = ( ) ; 

= 0, (4.1.40) 

(4.1.41) 

2hcn 

,(3) : ^0> 

(A0 + l)c44 + 
3A0[A0el5+(el5-e3l) ] 

,(3) A0c44 + 

4 ( V n + ff33> 

4(Vl l+^33) 

(4.1.42) 

An approximate solution to Equation (4.1.41) is found to be 

p ( 3 ) « ° 
(3) 

6(3) 

^ fl(3)c(3)^ 
1 + 

(* ( 3 ) )2 
(4.1.43) 

Letting c44—» °° in Equation (4.1.43) and expanding it into a polynomial 
of Ao, we obtain 

3 — — 
p0) * - A 0 (1 + - # , ) , ^ - g3

2 /(Cnff33 ) (4.1.44) 

which shows the same behavior as Equation (4.1.34). Buckling analysis 
of circular piezoelectric plates using two-dimensional equations was 
performed in [47]. 

4.2 Large Thickness-Shear Deformations 

We are interested in thickness-shear vibrations with relatively large 
shear deformations [48] for a plate whose reference configuration is 
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shown in Figure 4.2.1, with the X-i axis as the plate normal. The relevant 
relatively large displacement gradient components are Mi;2 and w3>2. Up to 
cubic nonlinearity, the three-dimensional equations are given in the 
fourth section of the first chapter. 

2h 

X2 

X1 

Figure 4.2.1. The reference configuration of an electroelastic plate and 
coordinate system. 

We introduce a convention that subscripts A, B and C assume 1 and 3 
only but not 2. Keeping nonlinear terms of w^ and M3>2 only, from 
Equation (1.4.6)i we have 

K-UA —CLMRS"R,S Up C 6 KLM^K 

+ CLMA2B2UA,2UB,2 + CLMA2B2C2UA,2UB,2UC,2 • 

(4.2.1) 

4.2.1 First-order theory 

For a first-order plate theory we make the following expansions of 
the mechanical displacement and electric potential: 

uL = M f (X, ,X3,t) + X2uf (Xx ,X3,t) + Xlu™ (X,, X 3 , 0 , 

~ A°) </> = <l)w{Xx,X„t) + X2<l>w{Xx,X„t), 0)/ 
(4.2.2) 

where u^ and «[2) will be eliminated or neglected later. From Equation 
(4.2.2) we can write 
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UR,S ~ URS + XlURS 

^=-^=40 )+^41 ) (4.2.3) 

where 
K ' 

iy(0) _ ,.(0) r7(0) _ (l) f /(0) _ (0) 
^11 — " 1 , 1 > ^ 1 2 — "1 ' UU ~ "1,3 ' 

|-/(0) _ M(0) r /(0) _ (1) rr(0) _ (0) 
U21 — "2,1 ' u 2 2 — "2 ' u23 ~ "2,3 > 

TT(0) _ M(0) r /(0) _ (1) r /(0) _ (0) 
u 31 — " 3 , 1 > * ^ 3 2 — "3 ' ^ 3 3 ~ "3,3 > 

£ / « = « « , tfg> = ^ = 0, ^ = « g , 

£ / « = « g = 0 , ^ = 2 M < 2 ) , ^ = ^ = 0 , 

[ / « = < > , I/£>=2«<»=0, C /«=«« , 

(4.2.4) 

and 

-E3
(1)=-^31), «E1

(1)=-^(
1

1), fE«=0. 
(4.2.5) 

Substituting Equation (4.2.2) into the variational formulation in Equation 

(1.1.24), for independent variations of Su(°}, Suf\ Suf , 8<t>{0) and 

S<f>m, we obtain the following two-dimensional equations of motion and 

electrostatics: 

'(0) . n.(0) _ryn , . . ( 0 ) 

KBlB-K?j+FV=lef.ii<}\ A = l,3, 

<^+© ( 0 ) =0 , 

© ^ - © f + © ( , ) = 0 . 

(4.2.6) 

Equation (4.2.6)i for M = l and 3 are the equations for extension, and 
for M = 2 the equation for flexure. Equation (4.2.6)2 is for thickness-
shear in the X\ and XT, directions. In Equation (4.2.6) the plate resultants 
and surface as well as body loads of various orders are defined by 
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{K<>>,<DP}=lh {Km,cDK)Xn
2dX2, 

F™ = [X"2K2M]h_h + \[h PJMXn
2dX2, (4.2.7) 

<DW =[X"2cD2f_h, n = 0, 1, 

where K^ represent plate extensional and shearing forces, and bending 
and twisting moments. Since the plate is assumed to be thin, we make the 
stress relaxation of K22 = 0. This implies, through Equation (4.2.1) by 

setting L = M = 2, the following expression for w2,2 in terms of other 
components of the displacement and potential gradients: 

U22 = \C22RSUR,S ~C2222M2,2 ~eK22^K 

c-mi (4.2.8) 
+ C22A2B2UA,2UB,2 + C22A2B2C2UA,2UB,2UC,2>-

In Equation (4.2.8) «2,2 has been eliminated from the right hand side. 
When R-S = 2 the two terms containing 1/2,2 cancel each other out. 
Substituting Equation (4.2.8) back into Equation (4.2.1) and Equation 
(1.4.6)2, we obtain the following relaxed constitutive relations for thin 
plates: 

K-LM ~CLMRSUR,S ~eKLM^K 

+ CLMA2B2UA,2UB,2 + CLMA2B2C2UA,2UB,2UC,2 ' (4.2.9) 

^K =eKRSUR,S +£KL<EL> 

where the plate material constants are defined by 

CIMRS ~ CLMRS ~CLM22C22RS ' C2222 ' 
— e e I 
CLMA2B2 ~CLMA2B2 ~ CLM22C22A2B2 ' C2222 ' 

CLMA2B2C2 ~ CLMA2B2C2 ~ CLM22C22A2B2C2 ' C2222 ' (4.2.10) 

eKLM ~eKLM ~ CLM22eK22 ' C2222 ' 

£KL = EKL +eK22eL22 'C2222.-

The right hand side of Equation (4.2.9) does not contain w2,2 and K22 = 0 
is automatically satisfied by Equation (4.2.9). Integrating Equation (4.2.9) 
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through the plate thickness, we obtain the zero-order two-dimensional 
plate constitutive relations 

K(0) -2h(c' U(0) -e' <F(0) 

^C1MA2B2UA UB + LIMA2B2C2UA UB "C h \?+.A.ll) 

< =2h(e'KRSU$ + SKL<ET), 

where we have modified the zero-order linear plate constants by the 
introduction of two shear correction factors K\ and KT3 as follows: 

E/g>->*,£/£>, Ug-ncM*- (4-2-12) 

Multiplying both sides of Equation (4.2.9) by X2 and integrating the 
resulting equation through the plate thickness, we have the first-order 
plate constitutive relations 

a ) _M_(- ? / ( l ) _ - ~(1K 

(4.2.13) 

A more sophisticated stress relaxation using K$ = 0 and K$ = 0 to 

eliminate Uf^ and Uy (and hence u^ and u^) can be performed. 

In summary, we have obtained two-dimensional equations of motion 
and electrostatics (4.2.6), constitutive relations (4.2.11) and (4.2.13), and 
the displacement and potential gradients (4.2.4) and (4.2.5). With 
successive substitutions, Equation (4.2.6) can be written as seven 

equations for w}0), w£0), uf^, u^, uf*, (ff0\ and 0(1). To these equations 
the proper forms of boundary conditions can be determined from the 
variational formulation in Equation (1.1.24). At the boundary of a plate 
with a unit exterior normal N and a unit in-plane tangent S in the 
reference configuration, we need to prescribe 

(4.2.14) 

K(0) 

Km 

<D ( 0 ) 

or 

or 

or 

M ( 0 ) 
UN > 

um 

"N > 
^ ) , 

A: ( 0 ) 

Km 

<D (1 ) 

UN 

or 

or 

or 

M ( 0 ) 
US ' 

w ( 1 ) 

"S ' 

^ ( 1 ) . 

KN2 or 4 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



184 Mechanics of Piezoelectric Structures 

4.2.2 Thickness-shear vibration of a quartz plate 

As an example, we analyze large thickness-shear vibration in the Xi 
direction of a rotated Y-cut quartz plate (see Figure 4.2.2) [48], which is 
a widely used operating mode of piezoelectric resonators. 

2h 

X2 

X\ 

Figure 4.2.2. An electroded quartz plate. 

4.2.2.1 Governing equations 

The material matrices of rotated Y-cut quartz can be found in 
Equation (2.1.2). Consider a plate electroded at its two major faces. For 

thickness-shear in the X\ direction, M]
(1) is the dominating mechanical 

displacement which is coupled to 0(1). For a very thin plate, edge effects 
can be neglected and the thickness-shear mode does not vary with X\ and 
X3. Then the relevant equations are 

.3 

• A : ( 0 ) 

-^-21 

Ipjt ;0) 

K{0) -2h(c' f/(0) -e' <E(' 
JS.2\ — ̂ ''K.L2U2U12 ^221-^2 

(0) 

+ C 

,(0) 

uiV+c 211212"! " 1 21121212"! 
0)„0)„(Dl 

w; 'u\'u i "i (4.2.15) 

U<»=«?\ 
<E 

From Equations (4.2.15)2,4,s the equation of motion in Equation (4.2.15)! 
can be written as 

U + a>^u + j3u +yu -a</> 3 - „JSX) (4.2.16) 
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In Equation (4.2.16) we have denoted 

u=u\x\ ml = 3c2ll2/(p0h
2), a = -3e22i/(p0h

2), 

K"l c2112' g221 ~ ""ie221' 

2_K2 U2
6 j-2 _ (4.2.17) 

12 jt en{c66+eule21) 

P = 3c2U2l2/(p0h
2), 7 = 3c2U2]2l2/(p0h

2), 

where the thickness-shear correction factor is taken from [27]. In 
Equation (4.2.17), co is the fundamental thickness-shear frequency from 
a linear solution. We want to study free and forced vibrations near 0) . 

4.2.2.2 Free vibration 

For free vibrations we look for a periodic solution with undetermined 
frequency at and amplitude A to the homogeneous form of Equation 
(4.2.16). For rotated Y-cut quartz, ft = 0 and therefore the quadratic 
nonlinear term in Equation (4.2.16) disappears. Substituting u = Acoscot 
into Equation (4.2.16) (with V = 0), and neglecting the cos3c* term, we 
obtain 

-co2A + colA+-YA3 = 0 . (4.2.18) 
4 

Equation (4.2.18) yields the following expression for the nonlinear 
resonant frequency 

co=la)l+?-rA2 =ft,M(l + ̂ f - ) , (4.2.19) 
V 4 &ol 

and the following corresponding free vibration mode 

u = A c o s K ( 1 + - ^ - ) f ] . (4.2.20) 

Equation (4.2.19) shows that for large amplitude vibrations the frequency 
becomes amplitude dependent. 

4.2.2.3 Forced vibration 

Next consider electrically forced vibrations under a voltage across 
the thickness of the plate with <p(±h) = ±0.5Fcoso*. Then Equation 
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(4.2.2)2 implies that 

0 ^ = 0 , ^ = — c o s a * . 
1h 

(4.2.21) 

*(D With f-' from Equation (4.2.21), Equation (4.2.16) can be written as 

.. 2 3 aV 
u + coxu + cu + yu = cos cot, 

2h 

(4.2.22) 

where we have also introduced a damping term with a damping 
coefficient c = 2(Ut0£= afe/g. C is the relative damping coefficient and Q 
is the quality factor. We look for a solution to Equation (4.2.22) in the 
following form: 

u = A cos(cot + y/), (4.2.23) 

where A and (//are undetermined constants. Substituting Equation (4.2.23) 
into Equation (4.2.22), neglecting the cos3(cot+w) term, and collecting 
the coefficients of sine* and cosa#, we obtain 

[{col, -co2)A + — yA3]cosy/-cAcosini// = , 
4 2/z 

[(col -co1)A + — yA^^smy/ + cAcocosiff = 0. 

(4.2.24) 

Multiplying Equations (4.2.24)12 by cosy/and sin wrespectively and then 
adding them, and multiplying (4.2.24)i2 by sin y/and cosy/respectively 
and then subtracting one from the other, we have 

aV 
-cosy, 

(4.2.25) 
(al-co2)A + \yA' 

2h 

aV . 
cAco = suw. 

2h Y 

Squaring both sides of Equation (4.2.25)i>2 and then adding them yields 

(4.2.26) 2 „ 2 N J , ^ ,3,2 . ,„Ar*Jl _ (aV \l [(col -a>l)A + -yA*Y + (cAa>Y = (—) 
4 2/z 

We are interested in resonant behaviors near co<o. Therefore we denote 

co-cox + Aco. Then col -co2 = -2coxA.co, and Equation (4.2.26) can be 

written as 
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(Aft)-
lyA1 

-)2+^r=( 
80^ 4 

from which we can solve for Aft) : 

av 

aV 
)2 

Aft) = ±— [(-
8« 2lv2A&> ,4 

) -c ] 2 l 2 

(4.2.27) 

(4.2.28) 

We calculate the electric current flowing in or out of the driving 
electrodes, which is important to resonator design. From Equations 
(4.2.15)3, (4.2.17) i, and (4.2.23) we have, for the free electric charge per 
unit undeformed area of the electrode at X2 = h 

Qe = 
D<0) 

= -(KT1e2 6w-e2 20u) 
(4.2.29) 2h 

- ~Ki^26u ~ -^ie26Acos(ox + y/), 

where, for near resonance behavior, we have neglected the electrostatic 
term in the expression of Qe which is much smaller than the piezoelectric 
term. Then the current flows out of the electrode is 

Qe =-Kle26A(osm(ox + y/) = I sin(ox + y/), 

-Kxe26AC0 = -•Kxe26A(Q„ 
(4.2.30) 

From Equations (4.2.30)2 and (4.2.28), we obtain the frequency-current 
amplitude relation 

Aa> = 
3y 

8ft). 
+ 1 

2hl 

— \ 2 

— C 

1/2 

(4.2.31) 

Quartz is a material with very little damping. We choose the quality 
factor to be Q = 105. Consider a 1 MHz fundamental mode resonator 
with h = 0.8273 mm. The frequency-current amplitude relation predicted 
by Equation (4.2.31) is plotted in Figure 4.2.3, which is typical for 
nonlinear resonance. 

The vertices of the curves in Figure 4.2.3 fall on a parabola as 
predicted by an approximate analysis from the three-dimensional 
equations [49]. The Equation for the corresponding parabola predicted by 
the two-dimensional equations here is Equation (4.2.31), without the last 
term en the right hand side. In Figure 4.2.4 we plot the two parabolas 
from the two- and three-dimensional solutions as a comparison. It can be 
seen that the two parabolas are very close to each other. 
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Q =100,000 

800-r 

/ (A/m2) 

600--

400 

V = 6 volts 

V = 4 volts 
20d 

F = 5 volts 
Aft> (Hz) 

-200 -100 100 200 

Figure 4.2.3. Nonlinear amplitude-frequency behavior near resonance. 

800 T / (A/m ) 

600 --

400 --

200 --

10 20 30 40 50 

Figure 4.2.4. Amplitude-frequency behavior predicted by two- and three-
dimensional equations. 
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Chapter 5 

Piezoelectric Shells 

As a natural continuation of piezoelectric plates, we next study 
motions of thin electroelastic shells, which are common structures for 
devices. 

5.1 First-Order Theory 

Consider an element of a thin shell (see Figure 5.1.1). 

Figure 5.1.1. A shell element and coordinate system. 

189 
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(X\ and a2 are the middle surface principal coordinates, and a3 is the 
thickness coordinate. (a^o^Cfe) is an orthogonal curvilinear coordinate 
system. The thickness of the shell, 2/z, is much smaller than the radii of 
curvature R\ and R2 of the middle surface. Let Ax and A2 be the Lame 
coefficients corresponding to ot,\ and a2 at the middle surface. The metric 
in {a\,a2,(Xj) is given by Ai(l-a3/R{), A2{\-a3IR2), and 1, which 
determines the tensor operations in (a\,a2,a3). The strain-displacement 
relations take the following form [50]: 

Su=-
1 

«, 4(1 + ^ ) 

du} 

da, 
l- + 

R 

S22 - • 
1 

a, M1 + -?) 

du-

da1 

2 + 

«2 94 , Afo 
1 

y42 9«2 Rx 

u, 8A2 A2u3 
1 

A[ da, R2 

5 

0 _ 8U3 
' 3 3 - a 

oa3 

(5.1.1) 

a, 2S23=^2(1 + — ) ~ 
R-, da-, 

2S3l = 4 ( 1 + ̂ - ) : a 

a, 

i?, 5a3 40 + ̂ ) 

+ 
<9w, 

4 ( 1 + ^ - ) ^ ' 
& 

*, 

du-i 

a, 

2Sn -
w+f) 

a? 

4(.+-) 

a, Mi+-r) 
+ • 

R2 d 

Mi**-) 
R, 

(5.1.2) 

The electric field-potential relation can be obtained from the gradient 
operation on a scalar in curvilinear coordinates 
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E x = -
d</> 

Ml + ^)dai 
E2=~ 

d(j) 

R 
^ ( l + ^ . ) 9 « 2 

R, (5.1.3) 

£ , = -
dtj> 

da, 

The charge equation of electrostatics is given by the divergence 
operation on a vector in curvilinear coordinates 

V D 
1 

+ -

4(1+«L)4(1 + 3L) i ^ 1 V 2 R2 

a, 

a, 
A-, 

da-, 
(5.1.4) 

+ -da, Ad+^HO+^)A 
^ & 

For thin shells, if the dependence of Ax(\- a3lRx) and A2{\- a3/R2) on a3 is 
neglected after their derivatives in the above formulas with respect to a3 

have been carried out, Equations (5.1.1) through (5.1.4) reduce to 

1 du, 

da, 
i , »2 dAi , 4 M 3 

^42 5 « 2 A, 

j 2 2 

dw 

5a, 
2 , "l ^ 2 , 4 « 3 

Ax dax R, 

_ du3 
'33 

da, 

2S. 23 
_ du2 

da-, R, 
- + • 

2 * , = - 4 5 
'12 ^42 da2 

1 dw3 

^2 S a 2 

A2 d 

2S-31 - + -
1 du, dux 

da3 Rx Ax dax 

Ax dax A, 

(5.1.5) 

El=-
1 d<j> 

Ax dax 
E2=-

1 d</> 

A2 da2 
E3=-

d<j> 

da, 
(5.1.6) 
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V D 
AA 

8 kA]+-/-kA]+^-tW>3] da, da-, da-, 

+ AXA2 
1 1 

• + • 

(5.1.7) 

V*> R A =°-
• 2 / 

The power series expansion method for plates also applies to shells [51]. 
For a first-order shear deformation theory we make the following 
expansions of the displacement and electric potential in {a\,a2,a^): 

Uj = u(f\al ,a2,t) + ajjlf (ax ,a2,t) + a%uf* (ax, a2, t), 

0 = 0(O)tei,a2»O + a30(1)(ai,a2,O» 

where u^ and «j2) will be eliminated or neglected later. With Equation 

(5.1.8), the strains and electric field for thin shells can be written as: 

(5.1.8) 

Su=W + a3s2\ Ek=Et» + a3E?\ (5.1.9) 

where 

4P--L du[0)
 | i40) 3AX ^ A,u\ 

dal 

(0) 
3 

C(0) _ 
°22 -

1 

A2 da2 R 

di / f u\u> dA2 

——+ — - + 
da2 Ax da, 

i/°) 1 d j / 0 ) 

vi 

R, 

AW(°) 

R, A2 da2 

iy(°) 1 r)nm 

" 3 3 — M 3 ' 

25w=A_L 
4̂2 d«2 

,(°) + 4 a 
^i 5a, 

«£0) 

(5.1.10) 
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5ff 

e ( i ) _ 
°22 -

M y , «41} a * , ^ 
9a, -42 9or2 i?, 

9wl W, 
——+ 
da-, 

1 ^ * 2 , ^ 2 M 3 

yi, 9 ^ & : 4 

9w,(1) M: 
—— + 
da, 

_£>94 
A2 da2 

du? 

da-, 

,(!) 

+ -
dA, 

Ax dax 

S^=2uf\ 2S$ = 2u™+ 1 ^ 
A2 da2 

(5.1.11) 

5,iI1> = 2 t t [ 2 ) + 1 

A 

i c ( D _ 4 5 

12 — 
J 2 3a2 

9«« 
dax 

k ( 1 ) l 
.4. 

Wl
(1) 

A2 9 

4̂, 9a, 

4̂, 9a, 

ft") - * 
9<*(1) 

. F.m=-

_A2_ 
? 

1 9<*(0) 

v42 9 a 2 

1 9 0<*> 

£f -r, 
(5.1.12) 

Ax dax A2 da2 

E{1)=0. 

The two-dimensional equations of motion are obtained by substituting 
Equation (5.1.8) into the variational formulation in Equation (1.2.26) for 

independent variations of Sux
m , <5w2

0) , duf^ , Sux
m and Su^ . The 

results are [50,52] 

3 ( t f n 4) + _a ( t f 2 1 4) 

da, da, 

+ Nn^-N22^ + QuAxA2±- + Fr =2PhAxA2u?\ 
da2 dax /?, 

d{NX2A2) + d(N22Ax) 

da, da-, 

dA dA + N2X-±-Nxx-± + Q23AxA2 — + F2
m =2phAxA2u?) 

da, da R, 
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8 (Q34)+-A(&34) da, oa7 
2 (5.1.13) 

-Nn^-N22^ + F^ =2PhAxA2uf\ 

d(MuA2) f d{M2lAx) 

dax da2 

+ Mn %L _ M22 ^ - Q3lAA2 + F{" = ^-AXA2^\ 
oa7 da, 3 

(5 1 14) 
5(M,2^2) | d{M22Ax) 

9a, 9a2 

+ M21 %L - Mn P- - Q3lAA2 + F" = ^AXA2$\ 
aax da2 3 

The two-dimensional charge equations are obtained by substituting 
Equation (5.1.8) into the variational formulation in Equation (1.2.26) for 

independent variations of 8<j>^ and Stf>m, or by moment operations on 

the three-dimensional charge equation in Equation (5.1.7). The results 
are 

d(E&0)A,) d(D^A) 1 1 

dax da2 i?, R2 

d(D^A2) d(D?A) 1 1 V 2 > + V 1/ + (_L + _L)j i^Zj(i) (5.1.15) 
da, 9a2 /?] i?2 

-AA2D^+D^=0. 

The shell resultants and mechanical surface loads are defined by 

W*.03o0C3} = { ^ M c W ) = ?h{Tab,T3c,Tc3}da3, 

Mab=TV = \h_hTaba3da3, (5.1.16) 

^j"> = [ 0 ^ , 4 4 ] ^ , /i = 0,1, a,b,c = \,2. 
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Nab are the extensional and shear forces in the tangent plane. Q^c
 = Qc3 

are transverse shear forces. Mab are bending and twisting moments. The 
resultants of the electric dispalcement and surface charge are 

DP = \[h Dka"3da3, Dw = \a"3D3AxA^h • (5-1-17) 

Equations (5.1.13) are for extension and flexure, and Equations (5.1.14) 
are for shear deformations in the a,\ and a-i directions. For shell 
constitutive relations we substitute the three-dimensional constitutive 
relations from Equation (1.2.7) into Equations (5.1.16) and (5.1.17), and 
perform the following stress relaxations: 

*%-t T33da3 = 0, 
* (5.1.18) 

TV=L T33a3da3 = 0, 7 = 1,2,3, 

so that S$ and Sy , and hence u3
l) and u^p can be eliminated. Shear 

correction factors can be introduced in the manner of Equation (2.4.16). 
Then the following two-dimensional constitutive relations will result: 

T^=2h(crklSJ»-e^\ 

D^ = 2Ke'kijS^ + sklE^), 
(5.1.19) 

DV^iy^+^Ef), r,s = 1,2,6, 

(5.1.20) 

where the relaxed material constants are defined in Equations (2.3.20), 
(2.4.18), (2.4.19), and (2.4.15). 

In summary, we have obtained two-dimensional equations of motion 
(5.1.13) and (5.1.14), charge equations (5.1.15), constitutive relations 
(5.1.19) and (5.1.20), strain-displacement relations (5.1.10) and (5.1.11), 
and electric field-potential relations (5.1.12). With successive 
substitutions, Equations (5.1.13), (5.1.14) and (5.1.15) can be written as 

seven equations for w,(0) , u^ , w<0) , w,(1) , u(? , (jf0) and 0(1). At the 
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Nm 

Mnn 

£(0) 

or 

or 

or 

w(0) 

u?, 
^ 0 \ 

Nns 

Mm 

D? 

or 

or 

or 

M(0) 
"s ' 

"s ' 

f\ 

boundary of a shell with a unit exterior normal n and a unit tangent s, we 
may prescribe 

Q% or <>, 

(5.1.21) 

Equations for laminated piezoelectric shells can be found in [53]. 
Equations for electroelastic shells under biasing fields can be found in 
[54,55] along with buckling analysis [55]. Nonlinear equations for 
electroelastic shells in large thickness-shear deformations can be found 
in [56]. 

5.2 Classical Theory 

For the classical theory of a shell in coupled extension and flexure 
without shear deformations, we set the relevant shear strains to zero: 

R, A, da, 1 ' ' (5.2.1) 

R2 A2 da2 

This allows us to express w,(1) and u^ in terms of the zero-order 
displacements for extension and flexure. Furthermore, we ignore the 
rotatory inertia in Equation (5.1.14) and obtain 

d(MuA2) ( 3 ( M 2 1 4 ) 

dax da2 

+ Mn^-M12^-Q,XAA1+FV=Q, 
oa2 oax 

d(Ml2A2) ( d(M22Ax) 

dax da2 

+ M2l^-Mu-^-Q32AA2+F2V=0, 
oax oa2 

(5.2.2) 
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which yields expressions for transverse shear forces Q3i and Q32 in terms 
of the bending and twisting moments. In summary, the equations for the 
classical theory are 

d(NnA2) | d{N2XAx) 

dax da2 

+ *l2P-N22f^ + QUAXA2±- + Fr = 2phAxA2^\ 
oa2 oax Rx 

d(NX2A2) ( d(N22Ax) 

dax da2 

^N2X^--Nn^ + Q23AXA2 - L + F? > = 2 p W , ^ 0 ) , 

/-(a34)+^-(fi23^.) 
a«! oa2 

_ JVU M . _ ̂  M . + F3(°) = 2pfe4^ii! ,(0) 

Kx K2 

where 

d(p^A2) t d(p^Ax) 

dax da2 

d(pfl2) |
 2d{D?Ax) 

dax da2 

Hj + y)AA2pV-AxA2pM+pV=0, 

N^ =2h{c'rsS^-e'krEf\ 

Pf^lKelS^+EyEf), r,s = 1,2,6, 

(5.2.3) 

(5.2.4) 

(5.2.5) 
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W-lyiV^ + Stfh r,* = 1A6, 
(5.2.6) 

QiAAi „ MnA) , 9 (^2 i4 ) 
5«, 

+ M, 
94 

- M , 12 - J " 2 2 
0 « T da, 

da-, 

+Fii\ 

n A A d(MuA) , d(Mzt4) 
9a, 9a, 

+ ^21 -r-^—Af,,—!- + F?\ 
dax oa2 

(5.2.7) 

*K du[0)
 Mf 94 4«f 

e(0) _ 1 
j 22 

9a, ^2 da2 ^1 

"&40) », ( 0 )9^2 , ^ i 4 0 ) ' 
9a, J, 9a, & 

4̂2 9a2 

,/o) 

4 + 
A2 9 

v4, 9a , 

./») 

(5.2.8) 

sff -

c(l) -
^22 " 

c ( l ) . 
0,2 -

1 

''A 
1 

= J 2 

~9w,(1) M2
1} 9 4 " 

9a , 4̂2 da2 

~du(
2
l) u^ dA2 

da2 Ax dax 

_AX 9 

^42 9a 2 

~uf 
A 

5 

5 

+ A d 
Ax dax 

"i41)" 

4 

(5.2.9) 
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,.(0) i a,.(0) 
( 1 ) _ W, 1 OU3 

U\ — , 

(1) *40) 1 du{0) 

« 2 = • 

(5.2.10) 

R2 A2 da2 

*(°> ... 1 ^ < ° ) 

*f».~I$£. *?>—L*£. »̂=o. 
-4 da, A2 da2 

.0) 

(5.2.11) 

With successive substitutions, Equations (5.2.3) and (5.2.4) can be 
written as five equations for w[0) , w2

0) , u^ , 0(O) and </>m. At the 
boundary of a shell with unit exterior normal n and unit tangent s, we 
may prescribe 

TV or w(0) iV or «(0) 

Q^ + M^ or uf\ M„„ or «g>, (5.2.12) 

Z>(°> or ^(0), 0<'> or <*(1). 

5.3 Membrane Theory 

A thin piezoelectric shell can sometimes be treated as a membrane 
that does not resist bending, without bending moments and transverse 
shear forces. In this case we have the following membrane theory: 

aax oa2 oa2 oax 

oax oa2 oax da2 

-Nu±-N*+F}<»=2phu?\ 
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d(D^A2) d(D^Ax) , i 
-̂ -i—ii + _Li_ii + (_L + _L)^2 j D(o) +jD(0) = 0, 

dax da2 I\ R2 

d(D^A2) dlD^AA ! ! 

da, - + - 6a-, ^ ^ 2 

- 4 ^ 0 ) + Z ) ( 1 ) = 0 , 

(5.3.2) 

D ^ / ^ S ^ + ^ ' X r,s = 1,2,6, 
(5.3.3) 

Dl id) 2/*3 
<i) s E(} 

bij^j ' 
(5.3.4) 

«P=i 
o(0) _ J _ 
°22 ~ ^ 

2S|2
0 ) 

a»,(0) i4°> 54 M0) 

da, A2 da2 

XL + 3 " 3 

ft 

d»f + t^_a4+£2Mf 
da2 Ax dax R2 

Ax d 

A2 da2 

" M l
( 0 > " A2 d 

Ax dax 

(5.3.5) 

E } 0 ) = -

£?>=• 

,(°) 1 dtp 

Ax dax 

1 d<f>m 

Ax dax 

E™ 

E$> 

1 d ^ 

4̂2 5 a 2 

1 <ty(1) 

J 2 3 a 2 

E^ = -f\ 

&=0. 

(5.3.6) 

With successive substitutions, Equations (5.3.1) and (5.3.2) can be 

written as five equations for w,(0) , w2
0) , u\0) , <jf0) and <jfl\ At the 

boundary of a shell with a unit exterior normal n and a unit tangent s, we 

may prescribe 

,/°) i,(°) N or u ' N or u( 

iv m u i un , jy m u i us , 

a 
(0) or <F\, E%> or ^ ,(i) A(D 

(5.3.7) 
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5.4 Vibration of Ceramic Shells 

As examples for applications of the shell equations obtained, we 
analyze some simple vibrations of ceramic shells. 

5.4.1 Radial vibration of a spherical shell 

Consider a thin spherical ceramic shell of mean radius R and 
thickness 2h with R» h (see Figure 5.4.1). The ceramic is poled in the 
thickness direction, with fully electroded inner and outer surfaces. The 
electrodes are shorted so that the lower order electric fields vanish. 
Consider the spherically symmetric radial vibration of the shell with only 

one displacement component M£0) = u^°\t). 

Figure 5.4.1. A spherical ceramic shell with radial poling. 

For the motion we are considering, the membrane theory is sufficient. By 
symmetry we have 

„(0) 

R^R2=R, 5<»>=5g>=fi- , (5-4.1) 
R 

where the strain-displacement relation in Equation (5.3.5) has been used. 
Then, from the constitutive relation in Equation (5.3.3) and the material 
constants for polarized ceramics in Equations (2.3.35) and (2.3.36), 
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we have 

Nn=Nn=2h(rnS<» + r12S$>) 

M ( 0 ) 7 i ( 0 ) 

= 2h 1 ,/°) 
4+4 R 

Substituting Equation (5.4.2) into Equation (5.3.1)3, we obtain 

R4+4 R p 3 • 
For free vibrations, the resonant frequency is 

2 2 
(° = V U 1~> 

P(5f,+4)i?2 

which is the same as the result in [9]. 

5.4.2 Radial vibration of a circular cylindrical shell 

(5.4.2) 

(5.4.3) 

(5.4.4) 

Next we analyze the axi-symmetric radial vibration of an unbounded 
thin circular cylindrical ceramic shell with radial poling, electroded on its 
inner and outer surfaces (see Figure 5.4.2). 

* 2 

Electrodes 

Figure 5.4.2. A thin circular cylindrical ceramic shell. 
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Let R be the mean radius, and 2h be the thickness of the shell. The 
electrodes are shorted so that the lower order electric fields vanish. The 
cylindrical coordinates (6,z,r) correspond to (aua2,a3) . Consider 
cylindrically symmetric radial vibration of the shell with only one 
displacement component (f) . For the motion we are 
considering, the membrane theory is sufficient. For a cylindrical shell we 
have 

AX=R, A2 = \. 

The relevant strain and stress components are 

M(0) w ( 0 ) 

(cEf um sE w (0 ) 

33 R (^)2-(4)2 & 
- 2h\cE - K UJ 1 3 - 2/z 

Substituting Equation (5.4.7) into Equation (5.3.1)3 

we obtain 

For time-harmonic motions, Equation (5.4.9) implies that 

, 2 = 1 

pR2(sW-(S?2f 
which is the same as the result in [9]. 

(5.4.5) 

•C=4r ' ^ } =0 , (5.4.6) 
K 

(5.4.7) 

-Nnj = 2pMf\ (5.4.8) 

-^MA^If2^' (5A9) 
c^ii) - ( ^ i 2 ) •« ^ 

® - - S T ^ T T T ' (5-4-10> 
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5.5 A Shell on a Non-Thin Body 

In some applications, we have a thin layer of one material on the 
surface of a body of another material. Such a structure can be modeled as 
a two-dimensional shell on a three-dimensional body with interface 
continuity conditions. 

5.5.1 A piezoelectric shell on an elastic body 

Consider static deformations of an elastic body coated with a thin 
piezoelectric film [57]. 

5.5.1.1 Governing equations 

The piezoelectric shell has the following material matrices under the 
compact matrix notation: 

e2i e22 

_ei\ e32 

As special cases, the matrices in Equation (5.5.1) include piezoelectric 
ceramics poled in the 1, 2, or 3 directions. The shell is assumed to be 
very thin so that the membrane theory is sufficient. The membrane 
tensile and shear forces and electric displacements are given by the 
following constitutive relations: 

M2 

Cl3 

0 

0 

0 

°12 

C22 

C23 

0 

0 

0 

•-13 

C23 

C33 

0 

0 

0 

0 0 
0 0 

0 
C44 

0 

0 

0 

0 

C55 

0^ 
0 
0 

0 

0 
c66y 

-23 c24 

c15 

c25 

c16 

c26 512 '22 "23 (5.5.1) 

c33 "34 c36_ = 13 '23 533 
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Nxx = NX = 2h(c[xSx
w + c(A0) ~ e£A0)), 

N22 = N2 = 2h{cx
p

2S\Q) + cp
22S

{
2

0) - ep
2E^\ 

Nu=N6=2h(c66Si0)-ek6Ei0)), 

D™ = 2h{e^ + ep
2S^ + eufl> - epE™), 

(5.5.2) 

where 

c l l = c l l _ C 1 3 ' C 3 3 5 C12 = c12 _ C 1 3 C 3 2 ' C 3 3 ' 

C22 = C 2 2 _ C 2 3 ' C 3 3 > g i l ~ ek\ ~C\3ek3' C33' ( 5 . 5 . 3 ) 

ek2 = ek2 ~ C23ek3 ' C 33 ' £kl = £kl ~ ek3el3 ' C33 • 

The membrane equations of equilibrium and electrostatics take the form 

d (A2Nx) + ^-(AxN6) 

h 

dax da2 

BA BA 

oa2 oax " 

-^(A2N6) + ^-(AxN2) 
oax oa2 

BA BA h 
+ N2-Ni+AlA2(2phf2+T32\

h
h) = 0, (5.5.4) 

oax Ba2 " 

- ^ - N 2 ^ + 2phf3+Ti3\
h_h=0, 

Kx K2 

9 (A2DX^) + ^(AXD^) 
8ax 8a2 

+ (± + l-)AxA2D^ + AxA2Dlh=0. 
Rx R2 

With successive substitutions from Equations (5.5.2), (5.3.5) and (5.3.6), 
Equations (5.5.4)j.3 can be written in the following compact form: 

Lp{v?>Jw,P>) + 2pkffi+t+fi-rfi=0, (5.5.5) 
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where Lp are linear differential operators, and t% = T3 „ (±h) are the 

traction vectors at the major faces of the film. /? = 1, 2, 3 is associated 
with the shell principle coordinates (a.\, a2, a^). At every point of the 
shell, there exists a set of transformation coefficients 3$ between the 
local shell principal coordinates and the global Cartesian coordinates. 
Multiplying Equation (5.5.5) by the transformation coefficients, we have 

Z,(u<V W 2 p & / , +t! -t~ = 0. (5.5.6) 

The elastic body is governed by the equations of linear elasticity. 

5.5.1.2 Boundary integral equation formulation 

Since the film interacts with the body through the surface of the 
body, we use the boundary integral equation (BIE) formulation and its 
numerical solution technique - the boundary element method. The 
displacement u and surface traction t of the elastic body (in a domain 
Q with boundary T) satisfy the following boundary integral equation: 

C(J>0)u(/>0) + f T(7»,/>0)u(iW/») 

f - f - ( 5 - 5 J ) 

= V(P,PQ)t(P)aT(P) + j V(P,P0)b(P)dQ(P), 
•T •'£2 

where Cy = 6y/2 for a smooth boundary, b is the body force vector of the 
elastic body, U and T are known second rank tensors and are related to 
the fundamental solution of the Navier operator in elasticity. They can be 
found in a book on boundary element method in elasticity. P is the 
source point and P0 is the field point. The traction vector t on the surface 
of the elastic body is related to the traction on one of the faces of the film 

by t = -t~ . Therefore, from Equations (5.5.6) and (5.5.7), we obtain [57] 

Cu+ f JuaT = - \ ti(L + 2phf + t+)dT+ f UbrfQ, (5.5.8) 
Jr Jr Jn 

where the displacement continuity conditions between the body and the 
film have been used. Equation (5.5.8) is a system of boundary integral-
differential equations because of the differential operator L. If the body 
is only partially coated with a film, then BIE (5.5.7) applies to the non-
coated portion of the surface. 
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5.5.1.3 An example 

We examine the basic behavior of an elastic body with a 
piezoelectric film governed by Equation (5.5.8) in an example. Consider 
a two-dimensional plane strain problem of a circular elastic body of 
radius R shown in Figure 5.5.1. 

Figure 5.5.1. An elastic body coated with a piezoelectric film. The thick 
lines represent electrodes. 

From -a to a, the body is coated with a ceramic film poled in the 
thickness direction. The film is electroded at its two major faces and can 
be used either as a sensor or an actuator. The voltage across the 
electrodes is denoted by V which implies that 

/°>=0, f^Vllh. (5.5.9) 

The relevant membrane force, in the polar coordinate system defined by 
x = rcosO and y - rsin#, is 
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Ng=2hc?l(u™+u<?))IR + e*xV, 

C, i = C\ i — C n / C->\, &w = 6-11 — C\\(Z%% I C% 

(5.5.10) 
-"13 ' ^ 3 3 ' c31 c31 - 1 3 c 3 3 ' u 3 3 -

From Equation (5.5.4), the tractions on the elastic body are 

i i „4V"0 ) 

^ 0 ^ v i i R 
+ ep

lV) = ~ep
iV, 

K 

lr6 R dd 

1 
—(2hrp Ue'ee ^-£- + ppV \^—PPV 
R\AnCU „ +e3V,e)- R

e3V,6> 

(5.5.11) 

where the approximation is for the case when the film is relatively soft 
(small cxl). Since V is a piecewise constant function, its derivative leads 
to a delta function and the traction is effectively a normal distribution q 
and a pair of concentrated forces Q as shown in Figure 5.5.2 with 

q = ep
xV/R, Q = ep

xV (5.5.12) 

Figure 5.5.2. Actuating forces on the elastic body due to the film. 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



Piezoelectric Shells 209 

The presence of the concentrated Q can also be seen from the boundary 
condition of vanishing Ne at the edge of the film and Equation (5.5.11). # 
is related to the curvature of the shell and does not exist for a flat film. 
Since the traction on the elastic body due to the film is now 
approximately known, the usual boundary element analysis of an elastic 
body can be performed. Otherwise boundary integral-differential 
equations will need to be solved as in the fourth section of the third 
chapter. As a numerical example we consider a PZT-7A piezoelectric 
film. For geometric parameters we choose R = 20 mm, 2h = 1 mm. A 
voltage V = 10 volts is applied across the film thickness. For the elastic 
body we consider plastics with E = 2.0x109 Pa and v = 0.3. Seventy-two 
quadratic boundary elements are used (see Figure 5.5.3). The three nodes 
at the (0, 20), (-20,0) and (0,-20) locations in the BEM model are fixed in 
the tangential direction. 

Figure 5.5.3. Discretization of the circular elastic body with 72 quadratic 
boundary elements (three nodes form one element). 
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The deformed shape of the body under the voltage is shown in Figure 
5.5.4 for a = 30°. The deformed shape is as expected under the applied 
loads and constraints. Conversely, if the body is deformed due to 
mechanical loads, a voltage will be produced across the electrodes of the 
film as a sensing signal. 

x(mm) 

Figure 5.5.4. Deformed shape of the elastic body (a = 30°). 

5.5.2 An elastic shell on a piezoelectric body 

Certain chemical and biological acoustic wave sensors detect a 
substance through the mass-frequency effect of the substance 
accumulated on the surface of a vibrating piezoelectric body. Next we 
analyze frequency shifts in a three-dimensional piezoelectric body due to 
a thin mass layer on its surface [58]. Consider a piezoelectric body with a 
thin elastic film of thickness 2h' and mass density p ' on part of its surface 
(see Figure 5.5.5). 
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Figure 5.5.5. A piezoelectric body with a thin elastic layer on 
part of its surface. 

5.5.2.1 Governing equations 

The governing equations and boundary conditions of the body are 

cjikiukjj + ekAkj = pUi, in V, 

-eikiuk,ii+eik<t>M=^ i n F ' 
w,=0, on Su, 
Tjinj = (cjikiuk,i + ekAk )nj = *„ o n ST . 

<j> = 0, on Sp 

where ^ is due to the interaction between the body and the film. For the 
elastic layer, we use the two-dimensional equations of an elastic shell. 
For the lowest order effects of the mass and stiffness of the layer, the 
membrane theory is sufficient. The shell displacement vector is given by 

Up = u^P(al,a2,t). p = 1,2, and 3 is associated with the shell principle 

coordinates {a\,a2,a^). Then the shell membrane strains are 

(5.5.13) 
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rf0) _ l du^ t » f dAx | 1 ^ 

, , ,=±Mi + j f ^ + ±„<.> (5 .5 ,4) 
-42 9a2 V4,Y42 9a, R2 

AO) _iA ( i ! ) + AA ( f 
4 9a, At A-, da-, A, 

The membrane stress resultants are given by the following constitutive 
relations: 

N^lhXrnS^ + rnS^), 

N2=2h'(ruSl0) + riA0)), (5.5.15) 

N6=2h'y66Sf). 

The membrane equations of motion are 

9 (A2Nx) + ^-(AxN6) 
dax da2 

+ N ^ - N 2 ^ + AxA2fx = AxA22pWu?\ 
oa2 oax 

-^-(A2N6) + ^-(AxN2) (5.5.16) 
oax oa2 

+ N6^-Nx^- + AxA2f2 = AxA22p'h'uf\ 
oax oa2 

-jNx-j-N2 + f3 = 2p'h'u<?\ 

where / is the load per unit middle surface area of the shell. With 
successive substitutions, Equation (5.5.16) can be written in the 
following compact form 

-LfS(u
(0)) + fp=2p'h'uf, (5.5.17) 

where Lp are linear differential operators. Multiplying Equation (5.5.17) 
by the transformation coefficients S,p between the local shell principal 
coordinates and the global Cartesian coordinates, we have 

-A(n ( 0 ) ) + // =p'h'ufK (5.5.18) 
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We note that the /, in Equation (5.5.13)4 and the ft in Equation (5.5.18) 
are actions and reactions, equal in magnitude and opposite in direction 
(ft = -'/)• Substituting Equation (5.5.18) into Equation (5.5.13)4, for 
time-harmonic motions with an exp(zorf) time dependence, the 
eigenvalue problem for the free vibration of the body with the film can 
be written as 

-cjikiuk,ij-ekAkj=pAun i n V, 

-eikiukji+£ik^ki=0, in V, 

ut=0, on Su, 

TPnJ = (cjikiuk,i + ekjih>j (5.5.19) 

= £[2p'h'/luj-Lj(u)], on ST, 

<f> = 0, on Sj, 

A",=(eikiuk,i - ^ , * H = 0 , on SD, 

where we have denoted X = a>2. e is a small parameter introduced to 
formally show the smallness of the effect of the film. The real physical 
problem corresponds to e = 1. Because of the continuity between the 

layer and the body, the displacement of the layer u(0) is the same as the 
displacement u of the piezoelectric body at its surface S. Equation 
(5.5.19) can be written in a more compact form as 

AU = ABU, in V, 

ut=0, on Su, 

TJi(VynJ=e[2p'h'*ul-Li(u)]„ on ST, (5.5.20) 

^ = 0, on S+, 

0,(11)71, =0, on 5-D, 

where U = {uk,<p} is a 4-vector. The differential operators A and B are 
defined by 

AU = {-cJikluklj-ekjl<f>kJ-eiklukli+£Ul<f>ki}, 
(5.5.21) 

BV = {pui,0}. 

7},(U) and A(U) are the stress tensor and electric displacement vector in 
terms of the 4-vector. 
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5.5.2.2 Perturbation analysis 

We look for a perturbation solution to Equation (5.5.20). Consider 
the following expansions: 

= U(0) + £U(1), 

where and ^(0) are the frequency and modes when the elastic 
layer is not present. Beginning from Equation (5.5.22), for the rest of this 
section, the superscripts will be for perturbation orders, not for orders of 
shell displacements. Substituting Equation (5.5.22) into Equation 
(5.5.20), collecting terms of equal powers of e, we obtain a series of 
perturbation problems of successive orders. We are interested in the 
lowest order effect of the layer. Therefore we collect coefficients of 
terms with powers of e° and e1 only. The zero-order problem is 

-cm$l-eJ$=p&W, in V, 
- e « « ^ + ^ 0 ) = 0 , in V, 

«,(0) = 0, on Su, 

(cJiklu
<i!>] + ekJi^)nJ=0, on ST, 

^(0) = 0, on S+, 

(e^J-eJ^yn^O, on SD. 

(5.5.23) 

This represents free vibrations of the body without the surface mass 
layer. The solution to the zero-order problem, A(0) and U(0), is assumed 
known as usual in a perturbation analysis. The first-order problem below 
is to be solved: 
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- c « 4 ! ) / + ^ ) = 0 , in K, 

w,(1)=0, on Su, 
(5 5 24) 

(c^«i1j + ^J ))n>=[2p%U ( 0 ) i |W-Z I . (nW)], on ST, 

<*(1)=0, on S,, 

( « a / 4 ! K ^ ( * ) K = 0 , on 5-D. 

The differential equations for the first-order problem, Equations 
(5.5.24)12, can be written as 

AU(1) = A(0)BU(1) + A(I)BU(0). (5.5.25) 

Multiplying both sides of Equation (5.5.25) by U(0) and integrating the 
resulting equation over V, we have 

<AU (1);U (0)> 

= I [(-CjiAl ~^i<r§)^0) H - e ^ + e ^ ^ W (5-5.26) 

- A(0) < BU(1);U(0) > +Am < BU(0);U(0) >, 

where, for simplicity, we have used < ; > to represent the product of two 
4-vectors and the integration over V. With integration by parts, it can be 
shown that 

<AU (0);U (1)> 

= - J [Tj, (U(0) )njuf) + D, (U(0) )n^m ]dS 
. S (5.5.27) 

+ £ [Tkl(V
m)n,u^+Dk(V^)nk^]dS 

+ <U (0 );AU (1 )>. 

With the boundary conditions in Equations (5.5.23)3.6 and (5.5.24)3.6, 
Equation (5.5.27) becomes 

<AU (0);U (1)> 

= J [Ip'h'^u^ - Lk(u
m)]u(

k
0)dS+ < U(0); AU ( 1 ) > (5.5.28) 
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Substituting Equation (5.5.28) into Equation (5.5.26), 

< AU(0);U(1) > - f [2p'h'X%^ - 4(u ( 0 ) ) ]4 0 ) ^ 

= X0) < BU(,);U(0) > +Am < BU(0);U(0) >, 

which can be further written as 

<AU ( 0 ) - i 0 ) BU ( 0 ) ;U ( 1 ) > 

- J [2p%'A(0)«f)-Z t(u(0))]«f)dS (5.5.30) 

= ^ 1 ) <BU ( 0 ) ;U ( 0 ) >. 

With Equations (5.5.23)i2, we obtain, from Equation (5.5.30) 

i(l) _ _ JST 

<BU<°>;U<°>> 
(5.5.31) 

Ipuf^dV 

The above expression is for the eigenvalue A, = a1. For a> we make the 
following expansion: 

ca = (o(0)+E(Dm. (5.5.32) 

Then 

Hence 

sa>m 1 

(5.5.33) 

«<»> ~ 2(comf 
B&> 

1 -sJS 
f [2p'h'^u^-Lk(u

m)]uk
0)dS (5-5-34) 

JST 

2(«(0))2 \pu™u™dV 
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Finally, setting e= 1 in Equation (5.5.34), we obtain 

a-d* 1 is [4(«(0))40)-2^V0))240)40)]^ 
a>m ~2(a/ 0 ) ) 2 \vP^dV 

(5.5.35) 

The stiffness effect of the film is in Lk. When Lk = 0, Equation (5.5.35) 
reduces to 

0)-C0 
(0) 

CO ,<°) 

J p'h'uf^dS 

)vPu^dV ^ 
(5.5.36) 

which is due to the inertial effect of the film mass only, and is the result 
of [59]. 

5.5.2.3 An example 

As an example consider the radial vibration of a thin elastic ring (see 
Figure 5.5.6) of a mean radius R, thickness 2h, Young's modulus E, 

2h',p',E' 

Figure 5.5.6. A thin elastic ring with a mass layer. 
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Poisson's ratio v, and mass density p. The mass layer has a thickness 2h\ 
Young's modulus E' and mass density p'. 

A ring can be considered as a circular cylindrical shell with the axial 
extensional force Nz = 0. When the mass layer is not present, in 
cylindrical coordinates, the lowest radial mode is given by ([9] or 
Equation (7.3.6) of the present book) 

t«»v> (*>w) *v 
.,«» = C, .,«» = 0, , ( ° > - c 

(5.5.37) 

= -v—z = 0, 
R 

where C is an arbitrary constant. u™ is due to Poisson's effect, which is 
relatively small and is neglected as an approximation. For the layer, the 
equation of motion in the radial direction is 

2h'E' 

R2 -ur+fr = 2p'h'ur. 

Hence 

400 = 
2h'E' 

R2 ur, Le(u) = 0, 4 ( u ) = 0. 

(5.5.38) 

(5.5.39) 

Substituting Equations (5.5.37) and (5.5.39) into the perturbation integral 
in Equation (5.5.35), we obtain the frequency shift due to the mass layer 
as 

co-co ,("> 1 1 
CO 

(0) -2(com)22ph 

1 1 

2h'E' 

R2 
-2p'h'(o){0))2 

2(co{0))2 ph 

2h\E 

(h'E' Py E 

R' R2p, 
(5.5.40) 

P_ 

PJ 

Equation (5.5.40) shows that the inertial effect of the mass layer lowers 
the frequency, and the stiffness of the mass layer raises the frequency as 
expected. The result of Equation (5.5.40) and the result from [59] 
considering the inertial effect of mass only (which is the special case of 
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Equation (5.5.40) when E' = 0) are plotted in Figure 5.5.7 using E = su 

and p from quartz. For E' and p' we consider two cases of gold and 

aluminum. It is seen that for a heavy mass layer of gold the inertial effect 
of the mass layer dominates. However, for a light mass layer of 
aluminum the stiffness effect is also important. 

Figure 5.5.7. Effects of film mass and stiffness on frequency shifts. 

From the one-dimensional equation for a composite ring, it can be shown 
that 

2 Eh + E'h' ,ecAK 
GO =—-z . (5.5.41) 

R2{ph + p'h') 
Compared to Equation (4.8.9) of [9] or Equation (7.3.6) of the present 
book, we see that Equation (5.5.41) represents the frequency of a ring 
with a mass density and a Young's modulus averaged from those of the 
two phases according to the volume fraction. It can be easily verified that 
for a thin mass layer, Equation (5.5.41) reduces to Equation (5.5.40). 
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Finally, we point out that the effect of a mass layer on frequency can also 
be studied from the variational (Rayleigh quotient) formulation of the 
eigenvalue problem for free vibrations of a piezoelectric body with a 
mass layer. The variational analysis is somewhat simpler than the above 
perturbation analysis using the differential operators of the shell 
equations. 

5.5.3 An elastic shell in a viscous fluid 

A crystal resonator when put in contact with a fluid changes its 
resonant frequencies. This effect has been used to make various fluid 
sensors for measuring fluid density or viscosity. Torsional modes of a 
circular cylindrical cylinder or shell have particles moving tangentially at 
the surface and are ideal for liquid sensing. We now study the 
propagation of torsional waves in a circular cylindrical elastic shell in 
contact with a viscous fluid [60] (see Figure 5.5.8). Two cases will be 
considered: a shell filled with a fluid and a shell immersed in a fluid. 

Figure 5.5.8. An elastic shell in a viscous fluid. 

5.5.3.1 Governing equations 

Consider the following velocity field of the azimuthal motion of a 
linear, viscous fluid in cylindrical coordinates: 

vr = v z =0, ve = v(r,z,t). (5.5.42) 
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The nontrivial stress components are [61] 

or 

dfv^ 

\rJ 
Trz = M—. 

oz 
(5.5.43) 

where n is the viscosity of the fluid. The relevant equation of motion is 
[57J 

A-
H dt 

M 
1 o v Idv 

+ — + M <L1 
dz2 

(5.5.44) 
^drz r dr 

where p' is the fluid density. We look for a wave solution in the form 

v = V(r) sin kzexp(icot), (5.5.45) 

where k is the wave number and co is the frequency. Substitution of 
Equation (5.5.45) into Equation (5.5.44) results in the following equation 
forF: 

d2V 1 dV 

d? <rs<r 
i+ 

i 
v = o. 

where 

M 

(5.5.46) 

(5.5.47) 

Equation (5.5.46) is the modified Bessel equation of order one. Its 
general solution is a linear combination of I\(Xr) and K\(Xr), the first 
order modified Bessel functions of the first and second kind. Hence 

v = \CxIx(fo) + CjK^Ar^sinkzexpiioX), (5.5.48) 

where C\ and C2 are undetermined constants. 
Consider torsional motions of a circular cylindrical shell with 

thickness 1h and middle surface radius R. The membrane theory is 
sufficient. Let the middle surface displacement field be 

« i u, 
,(0) 

u 

,(0) 
1 

, ( 0 ) _ M ( 0 ) 

(0) _ ,,(0) _ 
uy =u, 

u(z,t), 

0, 

0. 

(5.5.49) 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



222 Mechanics of Piezoelectric Structures 

From Equation (5.3.1)! the equation that governs u is 

plhu = G 2 A | 4 +TrB (R+) -Trd (R~), 
dz 

(5.5.50) 

where n is the mass density and G is the shear modulus of the shelL 
TrB(R+) and Trd(R~) are the shear stress components at the outer and 
inner surfaces of the shell. They are due to the interaction with the fluid. 

Substituting Equation (5.5.43) into Equation (5.5.50) we have 

p2hii = G2h— + 
'dz2 

JM 
(5.5.51) 

Differentiating Equation (5.5.51) with respect to time once, using the 
continuity of velocity (non-slip condition) between the shell and the 
fluid, we obtain 

p2hv\R = G2h— 
dz + 

R+ L 

jjr 
3 fvA 
dr \ r MR-

(5.5.52) 

5.5.3.2 Interior problem 

First consider a circular cylindrical shell filled with a fluid (interior 
problem). In this case, for the fluid region, since K^O) is unbounded, we 
must have C2 = 0 in Equation (5.5.48). Substituting the remaining C\ 
term into Equation (5.5.52), we obtain 

2 2 , 2 • r103 

a> =cTk +i- n 
plhR 

XRI0(XR) 
- 2 (5.5.53) 

where c\=GIp is the torsional wave speed of the elastic shell when the 
fluid is not present. Equation (5.5.53) shows the effect of the fluid on the 
wave behavior, and hence the potential of measuring fluid properties 
through the wave frequency or speed. In the special case of a light fluid 
with a low density, from Equation (5.5.47) we have 

X = k+ imp 

2/jk 
(5.5.54) 
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Then 

I0(AR) = I0(kR) + r0(kR)^-, 

, (5.5.55) 

2/JK 

Substituting Equations (5.5.54) and (5.5.55) into Equation (5.5.53), to the 
lowest order effect of the fluid mass density, we obtain 

a> 
2 

klh p 
:cjk2+ia-^-, (5.5.56) 

plhR 

where 

a_kRI0(kR) 2 

Ix{kR) ' 

kR[I?(kR) - IpjkR)] + 2/0 (kR)^ (kR) 

2lf(kR) 

(5.5.57) 

In Equation (5.5.56) the effects of the fluid mass and viscosity become 
explicit. If we denote 

a> = ct)0+Aco, a)Q=cTk, (5.5.58) 

where m0 is the frequency when the fluid is not present, from Equation 
(5.5.56) we obtain 

^.s-J-£ + i - ^ - . (5.5.59) 
a>0 Akh p 4a>QphR 

Equation (5.5.59) shows that p' causes frequency shifts and fx causes 
dissipation, as expected. 

5.5.3.3 Exterior problem 

Next consider a circular cylindrical shell immersed in an unbounded 
fluid (exterior problem). In this case, since ^(oo) is unbounded, we must 
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have C\ = 0 in Equation (5.5.48). Substituting the remaining C2 term into 
Equation (5.5.52), we obtain 

^ARK0(AR) 2 2/2 • M® 
co =Cfk +i- ^ plhR K^AR) 

• + 2 (5.5.60) 

Approximations similar to Equations (5.5.54) through (5.5.59) can also 
be made to Equation (5.5.60). 
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Chapter 6 
Piezoelectric Beams 

In this chapter equations for the extension and flexure with shear 
deformations of electroelastic beams with a rectangular cross section are 
derived from the three-dimensional equations by double power series 
expansions in the thickness and width directions. The theory for coupled 
flexure and thickness-shear of an elastic beam was developed by 
Timoshenko before the corresponding plate theory. The study of high 
frequency extensional vibrations of elastic beams began with [62,63]. 
Similar to the situation for extensional vibrations of plates [33,34], the 
dispersion relations of the equations in [62] lack a complex branch, and 
[63] removes this deficiency. A high frequency theory for torsion is 
given in [64], which takes into consideration the deformation of a cross 
section. Power series expansions were used to obtain one-dimensional 
equations for elastic [65] and piezoelectric beams [66,24]. The material 
in this chapter is from [24,67-69]. Beams under biasing fields can be 
found in [70]. 

6.1 Power Series Expansion 

Consider a piezoelectric beam with a rectangular cross section as 
shown in Figure 6.1.1. It is assumed that the beam has a slender shape 
with a » b, c. The coordinate system consists of the centroidal principal 
axes. 

*3 

X 
^L x2 

2c 

2a 

0 
2b 

X\ 

Figure 6.1.1. A piezoelectric beam with a rectangular cross section. 
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To develop a one-dimensional theory, we make the following expansions 
of the mechanical displacement vector and the electrostatic potential: 

uJ=fjX^x"3u^"\x1,t), </>= j r ^ y ^ , / ) . (6.1.1) 
m,n=0 m,n=0 

Then the strains and the electric field can be written as 

S„ = |>2"*3"S<""">, E, = Y**ZxlE\m*\ (6.1.2) 
m,n=0 m,n=0 

where the strains and the electric field of various orders are as follows: 

$<"•"> = I[Mg-"> + u^m/n) +(m + l)(Si2u\m+hn) + SJ2ujm+l'n)) 

+ (n + l)(Snu^"+1) +SJ3u<»^)l (6.1.3) 

£<"•"> = -$"•"> - 5I2 (m + l)^(m+1'n) - Sa in + l)^(m'n+1). 

The one-dimensional equations of motion and electrostatics are obtained 
from the variational principle in Equation (1.2.26) 

00 

1lj,\ ml2j nlij +rj ~ H 2-t mnrs J ' 
r,s=0 (6.1.4) 

A(J'n) -mDf-™ -nD\m'"-x)+D{m'n) = 0, 

where the stress and the electric displacement of various orders are 
defined by 

7 f •"> = f Tyx"x"3dA, 
A (6.1.5) 

Df-n) = \ DrfxIdA. 

A = Abe is the cross sectional area. The surface traction, surface charge 
and body force of various orders are 

Ff*> =bm £ [ r 2 ; ( 6 ) - ( - i ) m r 2 ; ( - 6 ) K ^ 3 

+ c"fb[Ty(c)-(-l)"T3j(-c)]x^dx2 + jA pf^xldA , 
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6 "C (6.1-6) 
+ c" J [D,(c)-{-\)"D3{-c)^dx2. 

-b 

Bmms is a geometric quantity given by 

Dmnrs ~ J^ -*2 * 3 a A 
.m+r „n+5 

•r+m+1 s+n+1 46r+m+ics+n+1 (6.1.7) 
, w + r, w + s even, (r + w +1)(« + n +1) 

0, else. 

The one-dimensional constitutive relations take the following form: 
00 

y(».») _ V « (r K^'^ -e F^^h 1ij — £J
nmnrs\cijkl^kl ^kij^k h 

r,s=0 
(6.1.8) 

D ^ = Y , B m n r s ^ i k l S ^ + S i k E ^ ) . 

r,s=0 

Or, with the compressed matrix notation, for p, q = 1- 6 
00 

i p - Z-i mnrs(-CP<l 1 eipt'i ) ' 
r,s=0 

D^ = ±Bmnrs(eipS^+slkE^). 

(6.1.9) 

r,s=0 

The above constitutive relations are not ready to be used. Important 
adjustments are necessary which will be performed later. Since 
piezoelectric materials are anisotropic, couplings among extension, 
flexure and torsion may occur due to anisotropy. For anisotropic beams, 
although various types of deformations may couple, usually there still 
exist modes which are essentially extensional or essentially flexural, 
which are the modes we are interested in. The essentially torsional modes 
will not be treated in this book. 

6.2 Zero-Order Theory for Extension 

First we extract a zero-order theory for extension from the general 
expansions. 
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6.2.1 Equations for zero-order theory 

For a zero-order theory we make the truncation 

uj = uffi\xl,t) + x2uf-0)(xl,t) + x3uf-l\xi,t), 

(f> = </>(m (*,, 0 + X2</>{10} (JC, , 0 + x3^°'n (xx ,t), 

where u^ a nd uf» are needed to describe Poisson's effects during 
extension. They cannot be directly set to zero, but will be eliminated later 
by stress relaxations. An equation for the extensional displacement w,(0,0) 

will be obtained. From Equations (6.1.3) and (6.2.1), the zero-order 
strains and the electric fields to be considered are 

where 

(0,0) 

Sy 

Ek 

-u 

~ c(0,0) 
- aij > 

= Ei0fi)+x. 

,(0,0) v(0) . 
1,1 ' °22 • 

rd.o) 

= u™ 

+X34
0A.. 

C(0) _ 
' °33 -

) 

III0-1) 

(6.2.2) 

Sl°fi)=2S™=u™+u?-°\ 
jS(o,o)=2iS(o,o)=M(o,o)+M(o,i); 

c(0,0) _ 9 o ( 0 , 0 ) _ , . (0 ,0) (1,0) 
° 6 ~~ Z ° 1 2 — "2,1 i~ " l ' 

(6.2.3) 

E^ = - ^ , E^0) = -2^ ( 2 '0 ) = 0, E™ = - ^ ( u ) = 0, (6.2.4) 

E™ = -</>f», E™ = -<*(U) = 0, E™ = -2^2) = 0. 

From Equation (6.1.4) the equation for extension and electrostatics are 

T<-W+Ff0fi)=4pbcu[0fi), (6.2.5) 

z )(i,o )_Z)(o,o )+Z)(1 ,o )=0 j ( 6 2 6 ) 

/ ) ( « . ! ) _ 2,(0.0)+ ^(0.1) = Q 
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If there are electrodes present, some of the equations in Equation (6.2.6) 
need to be dropped or adjusted, as in the third section of the second 
chapter. The zero-order constitutive relations are obtained from Equation 
(6.1.9) by setting m = n = 0 and r = s = 0 

A(o'o)=4M^r+44°-o)). 
Equation (6.2.7) should be adjusted by setting the following zero-order 
stresses to zero 

T(0fi) = T(o,o) = ^(0.0) = ^(0,0) = ^(0,0) = 0 _ ( 6 2 8 ) 

In this case it is more convenient to re-derive the beam constitutive 
relations from the following three-dimensional constitutive relations: 

Sp =SpqTq +dkp-Ek, 
(6.2.9) 

D^d^ + slEj. 

Within the approximation we are interested in, from Equation (6.2.2) 

sr=v,+dkp(Er+XlEr+^D, 
D,=dJq+el(Ef»+X2E™+x,Ef»). 

Integrating Equation (6.2.10) over the cross section of the beam, we 
obtain 

D^=diqT^+AbcslEf0) 
(6.2.11) 

= djt0fiU4bcelEf°\ 
From Equation (6.2.1 l)i, for/? = 1 

AbcSffi) = suT{0fi) + 4bcdkiEi°'0), (6-2.12) 

which can be inverted to give the mechanical constitutive relation for 
extension 

*n (6.2.13) 

= 4bc(cnSr)-ekiEr), 
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where 

c „ = — , 2*,= — . (6.2.14) 
y n 

Substitution of Equation (6.2.13) into Equation (6.2.11)2 results in the 
following electric constitutive relations: 

D^ =dnT^ +AbcsT
uE^ 

= dn^{Sr}-dklEr) + 4bc4E?» 
Ml (6.2.15) 

where 

•Ml 'Ml 

= 4bc(enSr)+ZikEri 

~ „ r " i l " * l « - ) i / : \ 
% = f * • (6.2.16) 

Mi 
The first-order constitutive relations needed are approximated by 

or = ̂ 4Er\ or = ̂ f^r. (6.2.17) 
In summary, we have 

T$f>+F?fi)=4pbcu\m , (6.2.18) 

D$0)+DW=O, 

Z)^ 0 ) -Df 0 ) +Z) ( 1 - 0 ) =0, (6.2.19) 

A W ) _ Z ) ( o . o ) + j D W ) = 0 ) 

r/°-0) = 4bc(cuSl°'0) - eklEl°'0)), (6.2.20) 

A(°'0) = 46c(2'jl51
(0'0) + sikEffi)) , (6.2.21) 

Aa-°)=iy£^r), A ^ — ^ ^ r , (6-2.22) 
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c(0,0) _ (0,0) (6.2.23) 

,(0,0) 

(1,0) 

(0,1) 

Cll 

= -*?'°\ E?fi)=-^°\ E?fi)=-
= -tf-°\ ^0 )=o, £f'0)=o, 
= -*?», ^ w ) = 0 , £3

(0-1>=0, 

_ 1 _ rftl ? _ r rf,,dM 
- » e i : l - > bik~bik 

A(O,D 

(6.2.24) 

(6.2.25) 

With successive substitutions, Equations (6.2.18) and (6.2.19) can be 
written as four equations for Wi(0'0), (jf°'°\ 0(I'O) and 0(O,1). For end 
conditions we can prescribe 

"(0,0) 

A0.O) 

or u 
(0,0) J ( 0 , 0 ) 

<FW or A > 
(0,0) 

>0.o) ^(0,1) (0,1) 
(6.2.26) 

or A > ^ , u or A 

6.2.2 Equations for ceramic beams 

We discuss two cases of thickness poling and axial poling, 
respectively. 

6.2.2.1 Thickness poling 

Consider a ceramic beam poled in the x?, direction (see Figure 6.2.1). 

*3 

X 
^L X2 

2c fp 
Xi 

2o J/2b 

Figure 6.2.1. A ceramic beam poled in the x3 direction. 
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The material matrices are given in Equation (2.4.87). Then from 
Equation (6.2.14) we have 

~ _ 1 ~ ~ n ~ <^31 
C l l = ' e l l = e2\ = 05

 e31 = (6.2.27) 

[**]= 

rsn 0 0 A 

0 en 0 

33 

E\\~ £W> 

6 3 3 - fc33 

The constitutive relations needed are 

rr)=4te(c11<°>+e31^), 

D^=-4bcsu^°\ 

(6.2.28) 

(6.2.29) 

(6.2.30) 

£(1,0) =
 4 b c „s AhQ) 

A1 (0,1) _ 46c3 

^ / • u \ D ^ = Z ) 3
I W = 0 , 

•efo™, D™ =D™ =0. 

The equations of motion and charge are 

4bc(cuu^ +e^f'l)) + F^0)=4pbcul0fi) 

-4bcsu^
0)

+D^=0, 

4b3c 

3 

4bc3 

e^i0)
+4bcsu^

0)+D^=0, 

e^V -4bc(enu§0) -e33*
l°A)) + D™ = 0. 

(6.2.31) 

(6.2.32) 

(6.2.33) 
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6.2.2.2 Axial poling 

Next consider a ceramic beam poled in the X\ direction (see Figure 
6.2.2). 

x3 

z. ^L X2 

2c x\ 

2a 2b 

Figure 6.2.2. A ceramic beam poled in the jti direction. 

The material matrices are given by Equation (2.4.97). From Equation 
(6.2.14) we have 

1 
c , , = • -, eH e,, =• 

'33 e,i -e,, = 0, , ^21 - c31 
'33 >33 

(6.2.34) 

[%] = 

rsu 0 0 A 

0 e„ 0 22 

0 0 £ 33 

~ _ _r ^33^33 
*l l _ f c 33 ' 

*33 
~ _ T ~ _ 7" 
f 2 2 _ £ n > e33—^11-

The constitutive relations are 

r/0-0>=4fe(cu«S-0)+el I tf-0)), 

(6.2.35) 

(6.2.36) 

A ( 0 , 0 ) = ^ ^ 2 2 ^ ( 0 , 1 ) . 

(6.2.37) 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



234 Mechanics of Piezoelectric Structures 

(1,0) 
A1 

n(0.D 

4b3c 

4bc3 

• 4 # 0 4 \ ^1>0)=A(1'0)=o. 

The equations of motion and charge are 

4AC(eI1«gf>-giI^r+^(0-0)=0, 

_ i ^ 4 ^ . » +4^2^(0-1) + # " = o. 

(6.2.38) 

(6.2.39) 

(6.2.40) 

6.2.3 Extensional vibration of a ceramic beam 

Consider a ceramic beam poled in the x^ direction as shown in 
Figure 6.2.3. 

*3 

^L X2 

2c fp 

2a 

Figure 6.2.3. A ceramic beam poled in the x$ direction. 

We assume that a » b » c. The two ends of the beam and the lateral 
surfaces are traction-free. If the surfaces of the areas at x3 = ±c are 
fully electroded with a driving voltage ± V12 across the electrodes, 
the electric potentials are 

^ • 0 ) = 0 , </P»=VI2c. (6.2.41) 
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From Equations (6.2.32) and (6.2.29) we have the following boundary 
value problem: 

cuu^ = pui°'°\ -a<xx<a, 
U 1 (6.2.42) 

7i(0'0) =Abc{cuu\Y) + e 3 / ° ' 1 ) ) = 0, xx=±a. 
Equation (6.2.42) shows that the applied voltage effectively acts like two 
extensional end forces on the beam. For free vibrations, V = 0 and the 
electrodes are shorted. We look for free vibration solutions in the form 

u{m (*i, 0 = w, (*!) exp(HHf). (6.2.43) 

Then the eigenvalue problem is 

u,,, +p<y2snM, =0, - a< j c , <a, 
i.ii ^ ii i ' i (6.2.44) 

wt j = 0 , Xj = ± a . 

The solution of co= 0 and w = constant represents a rigid body mode. For 
the rest of the modes we try u = sin&C]. Then, from Equation (6.2.44)i, 

k = co.yjpsu . To satisfy Equation (6.2.44)2 we must have 

cosAa = 0, => &(n)a = — , n = 1,3,5, •••, (6.2.45) 

or 

/w n a = —-, fl)(n) = = = , /i = l,3,5,--. (6.2.46) 
2 2aV/»ii 

Similarly, by considering w = cosfcci, the following frequencies can be 
determined: 

co{n) = ™ , » = 2,4,6,- . (6.2.47) 
2aylpsu 

The frequencies in Equations (6.2.46) and (6.2.47) are integral multiples 
of a>m and are called harmonics. o(1) is called the fundamental and the 
rest are called the overtones. These results are the same as those in [9]. 

6.3 First-Order Theory 

Next we truncate the general expansions to obtain a first-order theory 
for coupled extension, flexure, thickness-shear and width-shear [24]. 
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6.3.1 Coupled extension, flexure and shear 

For a first-order theory, to include all first-order strains, we make the 
following truncations: 

J J *• J J J *• J *• J J J J / r -j -I \ 

where u2'
0), u(

2'
0), u\0,1) and uf'1^ are needed to describe Poisson's 

effects accompanying extension and flexure. They cannot be directly set 
to zero, but will be eliminated later by stress relaxations. Equations for 

the extensional displacement uf'^ , flexural displacements uf'0) and 

uf'0) , and thickness-shear and width-shear displacements w,(1'0) and 

wj0'1* will be obtained. From Equations (6.1.3) and (6.3.1), the strains 
and electric fields are 

c ~ e(°,0) c,(i,0) o,(0,i) 

Ek^E?»+x2Er+x,Er, 

where the zero-order strains are given by 

(6.3.2) 

£(0,0) 

£(0,0) 

£(0,0) 

£(0,0) 

- u{0'0) 

_ 9 c(0,0) 
- Z l 323 

= 2 < 0 ) 

= 2Sl°2'
0) 

the first-order strains, < 

c(0) _ 
°22 ~ 

- w ( 0 '0 ) 

_ " 3 , 1 
- u{m 

,.0.0) c(0) 
"2 ' °33 

+ «3°'°). 

+ « , ( , U ) , 

+ Wl
(1'0). 

= «i°J ) , 

anly the following expressions are 

sr = 
s™ = 

"1,1 ' 

'"iT-

(6.3.3) 

needed: 

(6.3 

(6.3 

•4) 

.5) 

The rest of the first-order strains will be eliminated by stress relaxations. 
The relevant electric fields are 
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E?fi)=-j$fi\ E^0)=-2^2fi)=0, E?fi)=-j™=0, (6.3.6) 

£<<>•» = -<t>f», E<?-1) = - ^ = 0, E?» = -2^ ( 0 '2 ) = 0. 

We keep the equations of motion corresponding to the extension Wi(0'0), 
flexure M2(°'0) and W3(0'0), and shear deformations wi(1'0) and «i(0,1): 

T^UF^=pAuffi\ 

TQf+F}0-0)=Mul°fi\ (6-3.7) 

T^-T^+F^^pAr2u^\ 

Tw)-T(0fi)+Fm=pAr2iimt 

where 

A = Abc, r2=c2/3, r2=b2/3. (6.3.8) 

ri and r^ are the radii of gyration of the cross section about the Xj and *3 
axes. For electrostatics we keep the equations for (/f0'°\ 0 , 0(O1) 

A(,r+0(o-o)=o, 
z)(i>o)_jD(o>o)+jD(i,o)=0j ( 6 _ 3 9 ) 

z?(o,i)_Z)(o,o)+D(o,i) ;=0 

For the zero-order mechanical constitutive relations we have, from 
Equation (6.1.8)1, for m = n = 0, 

7 f 0 ) = 4 ^ c „ S ? - 0 > - ^ ° > ) . (6.3.10) 

Equation (6.3.10) should be adjusted by setting the following zero-order 
contour stresses to zero [65] 

r2
(0 '0)=:r3 (0-0)=r4

(0-0)=o, (6.3.11) 

which permits the free development of the corresponding zero-order 

contour strains. Equation (6.3.11) will be used to eliminate Sf'0^, S^0'0^ 

and S?fi) from Equation (6.3.10). In view of the conditions in Equation 
(6.3.11), we now introduce an index convention which will be of 
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(6.3.12) 

considerable use to us in the sequel. The convention is that we let the 
subscripts oc, /3 take the values 1, 5, 6 and A, fi, v take the remaining 
values 2, 3, 4. Then Equation (6.3.10) can be written as 

nm=4bc(Ca^p+Ca^r -e^rh 
Tr^bc(cx^r+cXfJsr-eaEr). 

With this convention Equation (6.3.11) can be written as 

7 f ' 0 ) = 0 , (6.3.13) 

which implies, with Equation (6.3.12)2, that 

AbcS^ = -4bccic0Sf» + 4bccZelMEW, (6.3.14) 

where c~x is the matrix inverse of cX/J: 

cZC^=S».v (6-3-15) 
Substitution of Equation (6.3.14) into Equation (6.3.12)i yields the 
relaxed zero-order mechanical constitutive relations 

^ • 0 ) = 4 M ^ 4 0 ' 0 ) - ^ ^ ( 0 ' 0 ) ) , (6-3.16) 
where 

Cap =Cafi ~CaXCXftCnP> eia = eia ~ eifiCfUcA.a- (6.3.17) 

For the zero-order electric constitutive relations we begin with Equation 
(6.1.8)2 for m = n = 0 

= 4bcielaSr^aSr+8lkED. 

Substituting Equation (6.3.14) into Equation (6.3.18), we obtain 

Dr^Abcie^Us^r), (6.3.19) 

where 

£ik=£ik+eac~xlek,f (6.3.20) 
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If two shear correction factors K2 and K3 are introduced by the 
replacement of the following thickness-shear and width-shear strains in 
the strain energy: 

4° ' 0 ) -* *2£l(2'0). SU0) -+ "IS™' (6-3-21) 

the zero-order constitutive relations will be modified into 

Tr)=*bc{d'apSp-~e'iaEr)), 

Dr^tbcielpSp+e^r). 
(6.3.22) 

Equation (6.3.22) depends on the strains S\m, S?fi) and Sf'0), which 
are related to the extensional, flexural and shear displacements. 

For the first-order mechanical constitutive relations from Equation 
(6.1.8)1 we obtain, by setting m = 1 and n = 0, 

T™ ~<P„SW-e¥E?*>). (6.3.23) 

Equation (6.3.23) should be adjusted by setting the following first-order 
beam stresses to zero: 

7f°> = T?fi) = 7f0) = 7f0) = 7f0) = 0, (6.3.24) 

which permits the free development of the corresponding first-order 

strains. Equation (6.3.24) can be used to eliminate S$fi), S$fi) S%'0), 

S^l'0) and S£'0) from Equation (6.3.23). In this case we re-derive the 
beam constitutive relations from the following three-dimensional 
constitutive relations: 

Sn -
s
naTa

 +dknEk, 
(6.3.25) 

D^d^ + e'yEj. 

Within the approximation we are interested in, from Equation (6.3.2) 

S™+x2S™+X3S™ 

= spqTq +dkp(E?» + x2E™ +x3Ei°»), (6.3.26) 

Dl^dlqTq+e
T

yiEf^+x2E^+x3E^). 
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Integrating the product of Equation (6.3.26) with x2 over the cross section 
of the beam, we obtain 

- v r ( i -Q) • 4 b c
 d E-0.0) 

D r = d i j r + ^ £ T E r 

(6.3.27) 

From Equation (6.3.27)i, forp = 1 

4bcsr=snTr^dk:Er, (6.3.28) n l 1 x 1 s\ 

which can be inverted to give 

r f t o ) = J . 4 ^ £ ( W )_ a.0)) 

sn 3 

4b3c 
(6.3.29) 

(crf^^D-
Substitution of Equation (6.3.29) into Equation (6.3.27)2 results in the 
electric constitutive relation 

A ( ,-0)=M°-0)+^W ) 

Su 5 5 

= 463c dn a o ) 46jc r _^Aa_)E(.i,o) 
3 1 ?y \ IK ' K 

The above first-order constitutive relation is for flexure in the x2 direction. 
Similarly, for flexure in the JC3 direction, 

(6.3.30) 
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rr ~(cusr-enEn 
3 (6.3.31) 

In Equations (6.3.29) through (6.3.31) only the shear strains 5,(1'0) and 

S^ appear, which depend on the shear displacements. In summary, we 
have obtained 

Ttff+F{W=4pbcut0fi\ 

T$P+F^=4pbcuffi\ 

T$P+F?fi)=4pbcu¥fi\ (6.3.32) 

T™ -T™ +F™ =±pb3cu?fi\ 

T$? - 4 ° ' 0 ) +^1
(0'1) = -pbc3u™, 

D(o,o)+Z)(o,o)=0; 

D$0)-Dl0fi)+DQfi)=0, (6.3.33) 

T^fi) = *bc{c'apsp -e'iaEr]), a,fi = 1,5,6, 

Tr}=^(cusr-eklEri 

(6.3.34) 

(6.3.35) 
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?(0,0) _ „(0,0) 
> 1 - " 1 , 1 ' 

C i i = • , ckx - , 0jk- aik 

(6.3.36) 

6.3.37) 

^• 0 )=M l
(7, ^ - " f f , (6.3.38) 

£(o,o) = _^(o,o)5 £(o,o) = _^(i,o)) £(o,o) = _^(o,D5 

^ ' ^ f , £2°'0)=0, E™=0, (6.3.39) 

Ca/3 =Cap ~CaXCXfiCfifi' eia ~eia ~einC^CXa> 

£ik = £tk + eacZeku» «> /? = ^5,6, A,fi,v = 2,3,4, (6.3.40) 

With successive substitutions, Equations (6.3.32) and (6.3.33) can be 
written as eight equations for Ml

(0'0), M2
(0'0), W3

(0,0\ u{m, Ul™\ f'°\ f'0) 

and 0(O1). For end conditions we can prescribe 

7;(0'0) or Ml
(0'0), 7f-0) or u?'°\ 7f0 ) or uf'°\ 

7f0) or Ml
(1'0), T™ or u™, (6.3.41) 

(̂o,o) o r A(o,o)j ^(i,o) o r (̂1,0)̂  (̂o,i) o r A(o,i)_ 

6.3.2 Reduction to classical flexure 

For the theory of elementary flexure without shear deformations, we 
set the rotatory inertia terms in Equations (6.3.32)45 to zero: 
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r (Y)_ r (o .o)+ Fd,o)= 0 

' (6.3.42) 
r ( 0 , l ) r ( 0 , 0 ) F ( 0 , l ) _ n

 V 

111,1 Y31 + M ~ U> 

which can be used to solve for r2i
(0'0) and 73i(0'0). Substitute the resulting 

expressions into Equations (6.3.32)2,3 

r(1.0> + F d . 0 ) + F ( 0 , 0 ) = ^ ( 0 , 0 ) 
ii.li 1,1 2 A- 2 (6.3.43) 

which are the equations for elementary flexure. We also need to set the 
zero-order shear strains to zero 

5f0)=i4°-0)+«1
(1'0)=0, 

so that the first-order flexural strains can be represented by 
.(0,0 
*3,11 

T^ =Abc(c'uS[ofi) -e'nE?-0)), 

D^=4bc(e'nSl0fi)+£lkEl0>0)), 

TT(O.O) _ T ( l , 0 ) , 1^(1,0) 
i 2 1 -• '11,1 + Y 1 > 

r ( 0 , 0 ) _ r ( 0 , l ) - (0 ,1) 
"*31 - • '11 ,1 i " - r l > 

(6.3.44) 

51
(1-0)=-4°f?), S f ' ^ - i ^ j 0 . (6.3.45) 

The equations for the classical theory are 

ri(o,o)+Fi(o,o)=4p^(o,o)5 

T<?f + F2
(0'0) = 4pbcii?<0), (6.3.46) 

T$f+FW=4pbcul0fi\ 

/ ) ( ' . " )_ ^(0.0 + / j ( i . o ) = 0 j ( 6 _3_ 4 7 ) 

Z)(o.i)_Z)(o,o)+jD(o,i)=0) 

(6.3.48) 

(6.3.49) 
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Dr~ensr+z*EP), 

(6.3.50) 

(6.3.51) 

Sf0) = u$°\ Sf°> = -«£•?>, S™ = -ui°», (6.3.52) 

£(°-°) = -^f°>, £ f °> = -^0.0) j ^(o.o) = _^(o,i) ̂  

^•°)=-^j1-°) , i ^ ^ O , ^ ° ) = 0 , (6.3.53) 

E ^ = - ^ \ £ M = 0 j £(o.i) = 0 . 

With successive substitutions, Equations (6.3.46) and (6.3.47) can be 
written as six equations for Wl

(0'0), uffi\ uffi), f'°\ ffi) and f». For 
end conditions we can prescribe 

r / ° - 0 ) or Wl
(0-0), r6

(0-0) or u\' \ T$ '°̂  or u^' \ 
r,(I-0) or u%f\ T™ or uff, (6.3.54) 
^(0,0) o r A ( 0 , 0 ) ; ^(1.0) ^ A ( l , 0 ) 5 ^(0,1) Q r £,(0,1) _ 

6.5.5 Thickness-shear approximation 

Consider the beam in Figure 6.3.1. The material of the beam is of 
general anisotropy. 

6.3.3.1 Equations for coupled flexure and thickness-shear 

We study motions dominated by coupled thickness-shear w,(01) and 

flexure uf'0^. The major mechanical resultants are the shear force T^ 
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and bending moment T^'X). Coupling to extension is neglected. We also 
assume b » c. The beam may be electroded at x3 = ±c or at both ends, 
but not at x2=±b . We perform the thickness-shear approximation in a 
way that is sufficient for later applications to a piezoelectric transformer 
[67] in this section, not in the most general manner. 

*3 

2c 

2a 

Z. X2 

71 
r2b 

Xi 

Figure 6.3.1. A piezoelectric beam. 

First we summarize the equations for coupled thickness-shear and 
flexure without extension. In the absence of body and surface mechanical 
loads, from Equations (6.3.7) and (6.3.9), the relevant equations of 
motion and the lowest order charge equation are 

r (0 ,0) 
^ 13,1 

T(0U 
Ml,l " 

n(0.0) 
•^1,1 

xtensic 
s„ 
A 

= pAbcuf'°\ 

-rr=P4bf> 
+ Z)(0-0)=0. 

MI we re-derive c( 

= sijld^kl +"kijEjc> 

= dijkTjk+slEj. 

:;(0,1) (6.3.55) 

(6.3.56) 

The zero-order constitutive relations can be obtained by substituting 
Equation (6.3.2) into Equation (6.3.56) and integrating the resulting 
equation over the cross section of the beam 

(6.3.57) 
AbcSf0) = spqT^+AbcdkpEl 

D 
(0,0) = J r (0 ,0) 

uiq1q + AbcsljEj (0,0) 
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We keep the dominating shear force 7,
5
(0,0) and make the following stress 

relaxation: 

7 f 0 ) = 0 , ? = 1,2,3,4,6. (6.3.58) 

Then, for/? = 5, Equation (6.3.57) becomes 

AbcSf* =sssT™U*bcdk5E?m, 
(6.3.59) 

D^=dl5T^+4bc^Effi\ K } 

Equation (6.3.59) can be inverted as 

T?» =^{K2S?» -Kdk5E?»\ 
555 (6.3.60) 

D\W =Abc&KS?V +euEfn\ 

where rc(= KX) is a shear correction factor, and 

~ T "i5"j5 ttil aw 
£u=£y — • (6.3.61) 

Integrating the product of Equation (6.3.56)i with x3 over the cross 
section, we obtain 

^fs™ = v r +^fdkpEr- (6-3.62) 

For flexure, j / 0 ' ^ is the dominating resultant. We make the following 
stress relaxation: 

T f ' ^ 0 , 9 = 2,3,4,5,6. (6.3.63) 

Then, for/? = 1, Equation (6.3.62) becomes 

^Sr='nli°»+^fdHEr, (6-3-64) 

which can be inverted as 

r(o,D = i*£l(5(o,i) -duE{°»). (6.3.65) 
3*ii 
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The relevant strains and electric fields are 
c(0,0) _ (0,0) (0,1) o(0,l) _ (0,1) 
^ 5 - M3,l + U\ > ^1 ~ Ml,l ' 

With successive substitutions, Equation (6.3.55) can be written as three 
equations for w3

(0'0) and well as the electrostatic potential 0(O'O) 

*55 

—(-W + ^ n ^ 1 ) ) - ^ - [ ^ 2 « ) +«,(°-,)) 
c2555 (6.3.67) 

+ «/15^0-0)+M/35^0 '1)] = piiI
(0-,), 

^ ^ f ) +«™)-*n*<r - ^ r +7rD(0,0) =0' 
s55 Abe 

where Ef'^ has been dropped in view of the ceramic piezoelectric 
transformer we are going to analyze later using these equations. The 
expression for D3

(00) in Equation (6.3.60)3 is not used in Equation 
(6.3.67), but it is useful for determining the electric charge on an 
electrode when a beam is electroded at JC3 = ±c. For a beam electroded at 
JC3 = ±c, 0(O'O) is no more than a function of time and Equation (6.3.67)3 is 
not needed. For an unelectroded beam, Equation (6.3.67)3 is needed to 
determine 0(O'O). 

6.3.3.2 Thickness-shear approximation 

Next we study the thickness-shear approximation. When the beam is 
vibrating essentially at thickness-shear modes, the coupling to flexural 
motion is weak and can be eliminated by the thickness-shear 
approximation. For this simplification we proceed as follows. Consider 
the following simple wave solution: 

L(0,0) (0,1) .(0.0) -(0,1)1 

t"3 ' Ml ' * ; * > (6.3.68) 
= {A, B, C, £>}exp[i(£i + A*)]. 
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Substituting Equation (6.3.68) into (6.3.67)i yields the following relation: 

— [ K 2 (-£2A + i£B) - Kdl5£
2C + Kd35i£D] = -pco2A. (6.3.69) 

For long waves, the wave number % is small. Hence we drop the 
quadratic terms of E, in Equation (6.3.69). Furthermore, since we consider 
vibrations at frequencies very close to the lowest thickness-shear 
frequency ax^of an infinite beam, we set of ~ a}„ in Equation (6.3.69). 
We then obtain the following approximation of Equation (6.3.69): 

A = 1 (K2i@ + Kd35i$D), (6.3.70) 

which is equivalent to the following differential relation: 

«f°> = ^ 2 < ] ) + xd^r). (6-3.71) 

Substituting Equation (6.3.71) into Equation (6.3.67)2, we obtain the 
following equation for long thickness-shear waves: 

,2 
1 jyW) 3 g „(<U) 

~TU,\\ "~2 U\ 
Su C S55 

+ ^ 1 L ^ ) _ 3^.^(0.1) _ M i ^ ( o , o ) =pfi(o.D j 

su c s55 c s55 

(6.3.72) 

where 

1 _ 1 , 3y4 d*n _ du 3K3d35 
— = + 2 2 2 ' - ^ ~ + 2 2 2 " (6.3.73) 

For the electric potential we drop the second derivative term of M 3
( ° ' 0 ) in 

Equation (6.3.67)3, which is small for long waves, and obtain 

^ u ™ -ent?{0) -e13tf» + — Z)(0'0) =0. (6.3.74) 
Sec ^rOC 

Thus we have eliminated the flexural displacement «3°'0) and obtained 
two equations, Equations (6.3.72) and (6.3.74), for the shear 
displacement uf'1^ and the electric potential <ff°'°\ Under the above 
thickness-shear approximation, the resultants are approximated by 
dropping second derivative terms 
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7,(0,0) 
-M3 

n (0,1) 

Abe 

4bc3 

3s,, 

(K2U^+Kdl5<t>?fi)+KCti5^), 

(U\y>+dufr) 
(0,1) > 

A(°-°) =4bc&-KU™ -slj?fi) - 4 * ( ( M ) ) , 
(6.3.75) 

5 55 

z)(°-°) = ^ ( ^ L / a ^ - 4 ^ ° - 0 ) -4* ( 0 > 1 ) ) . 
'55 

6.J.4 Equations for ceramic bimorphs 

Since a uniform electric field produces strains in a piezoelectric 
beam but not curvatures, a two-layered beam (bimorph) is usually used 
to generate bending [68,69]. We study two cases of thickness and axial 
poling below. 

6.3.4.1 Thickness poling 

Consider the ceramic bimorph in Figure 6.3.2. When the polarization 
is reversed, the elastic and dielectric constants remain the same but the 
piezoelectric constants change their signs. 

*3 

2c 

X2 

^L 
TF 
1 

Xi 

— • 

2b 

Figure 6.3.2. A ceramic bimorph with thickness poling. 

We want to obtain one-dimensional equations for the elementary 
(classical) flexural motion of the beam bimorph. The major components 
of the mechanical displacement and electric potential are 
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UX(*!,X2,X3,t) = -X2uff](Xj,0 - *3l4j ,0)(*,,t), 

u2 (x, ,x2,x3,t) = ui°'0) (x,, t), 
(6.3.76) 

W3 (X\, JC2 J ̂ 3 J • ) = M3 ' (*i j 0» 

where the thickness- and width-stretch displacements u2'
0) and uf,l) 

are not explicitly given, but they are not zero. ^(0'0) is responsible for 

the axial electric field in the x\ direction, ^ (10) and ^°'l) are related to 

the lateral electric fields in the x2 and JC3 directions. Equation (6.3.76) 

implies S, = x2S[x'0) + x3S^,l) and the following beam strains and 

electric fields: 

S,™ =-«£?>, Si0" =-"%?, (6-3.77) 

E{W=-4f-°\ Ef'0)=-^°\ £f0)=-^°.». (6.3.78) 

5'1
(1'0) and 5'1

(0'1) represent bending curvatures in the x2 and JC3 directions. 
We are only interested in the zero-order electric field. The equations of 
flexure and electrostatics are 

T™+Fft0)+F™=4pbcuQfi\ 
' (6.3.79) 

Ttf$ + ̂  + ^3(°'0) = */*"*¥ •0), 

Z )(o,o ) + Z )(o,o)= 0 ; ( 6 3 8 0 ) 

where the equations corresponding to ^(1'0) and ^ (01) are not included. 
7,

1
(
1
10) and T^ are the bending moments in the x2 and ;e3 directions. 

For long and thin beams, since T22 = T2z = 0 at x2 = ±b and 733 = T32 = 0 
at X3 = ±c, these stress components are also very small inside the beam 
and are approximately zero everywhere. When the beam is not in pure 
bending, there are shear stresses Tu and Txi related to bending which are 
responsible for the shear resultants ri2

00) and 7,
13°'0). For ceramics, shear 

and extension are not coupled. Therefore, in calculating the bending 
strains, the only stress component that needs to be considered is Tu. 
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^.(1,0) = f, Tux2dA=\ —(Sx -dklEk)x2dA 
JA JA .v.. 

With the compact notation, Tx=sxx(Sx -dkXEk) and the bending 

moment in the x2 direction is 

_i 
JA " " JA s, 

2 3 (6-3.81) 
= 50.0)f ^ _ £ ( ° . ° ) f x ^ L d 4 = i*£ 5 0,o) > 

•M sxx >* sxx 3sxx 

which is not coupled to the electric field considered as expected. 
Similarly, the bending moment in the x3 direction can be written as 

T™ = f Tnx3dA=\ —(Sx -dkXEk)x3dA 
JA JA c.. •A Su 

= 5(o.i)f *LdA-E?fi~>\ x3^dA (6.3.82) 
JA M.. JA v.. JA sn

 JA sxx 

Abe1
 (0>i) 2c2bd3X F ( 0 0 ) 

3 s n o n 

which is electrically coupled to ^(01) as expected. The electric 

constitutive relation of interest is found to be 

Z)f0) = I D3dA= I (d3pTp+e3JEj)dA 

= £ (d3xTx+e3jE^dA 

= \A [ < W ( S i -dkXEk) + s3jEj]dA ( 6-3-8 3 ) 

2c2bd, 
^sr+*bcZ*E, (0,0) 

£ > 

where Ŝ  = x2iS
,,(10) + x3Sx

0'^ has been used and 

£ik=sJk-dndkl/sxx. (6.3.84) 
Within the classical theory, the transverse shearing forces in the beam are 
related to bending moments by 

T(0,0) _ r ( l ,0 ) c-0,0) 
•M2 — -Mil ~l~-rl ' 

(6.3.85) 
r(0,0) _ r (0 , l ) F(0,\) V ' 
-M3 — -* 11.1 1 
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6.3.4.2 Axial poling 

Next consider the case when the two layers of a bimorph have 
opposite axial poling directions (see Figure 6.3.3). 

2c J 

*3 X2 

— • 

2b 

Figure 6.3.3. A ceramic bimorph with axial poling. 

In this case the beam constitutive relations take the form 

4b3c j(l,0) 

j(0,l) 

3s 
- ^ • 0 ) , 

33 

4fo Q(O,I) 2c bd33 p(o,o) 
3s 

(6.3.86) 

33 5 33 

Dl0fi) = 
2c2bd-33 o(0,l) 

S?»+Abc{ei3-di3lsi3)E, 
(0,0) (6.3.87) 

'33 

Equation (6.3.86) shows that r/0'1' is coupled to E,(0'0) as expected. 

6.3.5 A transformer—free vibration analysis 

As an example, we use the beams equations developed to analyze a 
piezoelectric transformer [67] (see Figure 6.3.4). 

It is assumed that a,a »b,b »c,c . The driving portion -a < 

x\ < 0 is electroded at x^ = ±c , with electrodes in the areas bounded by 
the thick lines. In the receiving portion 0 < x\< a, the beam is electroded 
at the end *i = a. The driving portion and the receiving portion may have 

slightly different thickness 2c and 2c, and width 2b and 2b. V\ is the 
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input voltage and V2 is the output voltage. The transformer is assumed to 
be made of an arbitrary piezoelectric material. When it is made of 
polarized ceramics, the polarizations in the driving and receiving 
portions are as shown in the figure. 

0 = V2e" 

Figure 6.3.4. A thickness-shear piezoelectric transformer. 

6.3.5.1 Governing equations 

For the driving portion -a < x\ < 0, the electric potential is the 
known driving potential 

x3 +c f= VyexpQa*), 

0<°-°> = 1 F , exp(icot), 0(o'1) =-^=Vi exp(ia*). 
2 2c 

(6.3.88) 

The equation of motion under the thickness-shear approximation is from 
Equation (6.3.72) 

1 „(<U) 3*~ ,.(0.1) _ niiW) 
3 T w l 11 ~ _ 2 _ u\ ~ Pu\ > - M ^ * I 
S,, ' C S 

a < xx < 0 , (6.3.89) 
Ml w °55 

where we have denoted all the geometric and material parameters of the 
driving portion by an over bar. The boundary condition of vanishing 
shear force is, from Equation (6.3.75), 

r(o.o) = i 5 £ ( j f 2 (o,i) + ^ ^ ( 0 . 1 ) ) = o, Xl= -a. (6.3.90) 
*55 
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For the receiving portion 0 < x\ < a, 0(OO) is the major part of the 
electric potential. The equation of motion is from Equation (6.3.72): 

4-H&" - ^ « , ( ( U ) - ^ 4 ° ' 0 ) = p%°-l\ 0< xx < a. (6.3.91) 
11 55 55 

The electrostatic equation is from Equation (6.3.74): 

— " f t 0 - *n*(ii,0) =0, 0 < xx < a, (6.3.92) 

where the term Z)(00) for the electric charge on the lateral surfaces x2 = 
±b and X3 = ±c has been dropped for unelectroded surfaces. From 
Equation (6.3.92) we obtain 

^ ( o . o ) = ^ £ . (0 , i ) + c ( 6 3 9 3 ) 

where C\ is an integration constant. Physically C\ is related to the charge 
and hence the current on the electrode at x\ = a. Substituting Equation 
(6.3.93) into Equation (6.3.91), we obtain 

1 (o,i) 3/r (on JKM] 
~^rMi,n 2 
sn c s 

(o;i) __i!L_„(o,i) -""*is n _ ^,"(0,1) 
1,11 2 » 

11 C 5 55 

u\i\ —T^~u\"' —TALQ\ = M ' ° < *i < a> 
(6.3.94) 

4,_L 0 +JSL.) . 

For boundary conditions we need 

7;(o.o) = 46£(/l.2I/(o,i)+K/i^(o.o)) 

= ^£ (^M(o, i) + 4 ^ H C l ) , (6.3.95) 

*55 
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Then the boundary conditions take the following form: 

40.0) = i?£(^Ml«U> +^A-CX) = 0, xx=a, 

^(0'0) = V2 exp(zfttf), JC, = a, (6.3.96) 

^°-°)(0+) = iF1expO^). 

Since F2 is unknown, some circuit condition across the receiving 
electrodes is needed to determine its value. For continuity conditions we 
impose 

«{0-1)(0-) = u1
(0'1)(0+), 

(6.3.97) 
«S",)(o-)=i«S-,)(o+), 

in which the second equation is an approximation. 

6.3.5.2 Free vibration analysis 

Consider free vibrations for which the driving voltage V\ or 0(O'O) and 
(f'1^ vanish in the driving portion, which means that the driving 
electrodes are shorted. The receiving electrodes are open with no current 
or charge on the electrodes (A(0'0) = 0). Hence C\ is zero. This is the 
simplest circuit condition for the receiving electrodes. Then all the 
equations and boundary conditions become homogeneous. We need to 
solve an eigenvalue problem for GJ2 

_tt(o.i) + ^ L „ 1 ^ =psWu\»'x\-a <xx <0, 
c s55 

_„(o.i) + ^ i M i W ) = ^ y w . O <xx<a, (6.3.98) 
c s55 

ur\-a) = 0,ur\a) = 0, 

«ri)(o-)=»1
(o>i)(o+),<i)(o-)=<i)(o+). 

We try the following solution which already satisfies the two boundary 
conditions in (6.3.98)34 at the two ends of the transformer: 

M(o,D = Usmk(Xl + a)-a<xl<0, ^ ^ 

I 5sin k(a - xx ),0 < xx < a, 
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where A , B , k and k are undetermined constants. Substitution of 
Equation (6.3.99) into Equation (6.3.98)12 yields 

T~2 —• /— 2 3/C \ I 2 * r 2 

k = su(pco -—yZ—)>k = su(P<» 
3K 

c2s 55 c s 
- ) , (6.3.100) 
55 

which shows that the solution of w/0'^ may have exponential or 

sinusoidal behaviors depending on the signs of k2 and k2. This is related 
to the energy-trapping phenomenon of thickness-shear modes. For the 
operating mode of a transformer, sinusoidal behavior in both portions is 

desired. Hence we consider the case when both k2 and k2 are positive: 

- 2 I* A 2 
pco - _2_ > 0, pa> c s 

3K2 

.2 * 
>0. 

55 c s 
(6.3.101) 

55 

Substituting Equation (6.3.99) into the continuity conditions in Equation 
(6.3.98)5>6wehave 

Asin(ka) = Bs'm(ka), 

kAcos(ka) = -Bkcos(ka), 

which, for nontrivial solutions of A and B, yields the frequency equation 

tan(&a) _ k 

tan(ka) k 

The corresponding mode shape function is 

sinA:^ +a) 

(6.3.102) 

(6.3.103) 

«< W ) = sm(ka) 
sin k(a -xx) 

- a < JC, < 0, 

0 < xx <a. 

(6.3.104) 

sm(ka) 

Then the electric potential can be found as 

t(o.o) _ J 0» -a<x{<0 
f I cosk{a-xx)-cos{ka), 0<xx <a. 

(6.3.105) 

For a transformer it is also desired that the wave number k of the 
operating mode in the receiving portion satisfies 

k2 =s*u(pa>2 3K 
2T-)±{-)\ 

c s 55 a 
(6.3.106) 
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so that the receiving portion is not longer than one-half of the wave 
length in the x\ direction of the thickness-shear mode. Then the shear 
deformation does not change its sign and the voltage generated by the 
shear deformation accumulates spatially without cancellation. Solutions 
satisfying this condition will be obtained for a ceramic transformer below. 

6.3.5.3 Ceramic transformers 

Consider a ceramic transformer of constant width b = b . The driving 
portion is polarized in the JCI direction and the receiving portion is 
polarized in the x^ direction. For ceramics, usually 

(6.3.107) 

(6.3.108) 

This suggests that the thickness-shear transformer discussed here which 
operates with d\5 may be more effective in transforming than the 
conventional Rosen extensional transformers which use diX and d^ [9]. 
For a ceramic transformer, the equations derived above take specific 
forms. We have 

- 2 * ' -

®«>=—; , -a<xx<0, 

4c ps44 

a<° = 771 7—TTT' ° < *i < a ' 

For example, 

1 dXi |>| d3l 

PZT-2 
PZT-5H 
PZT-7A 

|, \dl5\>\d33\. 

"15 "31 "33 

440 - 6 0 152 

741 -274 593 

362 - 6 0 150 

(6.3.109) 

4 c > 4 4 ( l - ^ 5 ) 

because for free vibrations the electrodes in the driving portion are 
shorted and the electrodes for the receiving portion are open. In addition, 

_L = J_ 3/c4 _ 1 ^__\_ 
sn £33 pa>xc 5 4 4 S33 12 5 4 4 

(6.3.110) 
_L = J_ 3y4 _ 1 n1 \-k?5 

* ~ + 2 2 2 _ "** n ' 
SU S\i P«><oC 5 4 4 SU 12 Su 
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£u - £n - £u(l - kl5), 

(6.3.111) 

\-ki '55 J 44 C 11 J 44 J 4 4 l ^15 

7"2 —» / 2 3K" \ —* / 2 2 \ 

k =su(pa) -—2 ) = sup(o) -6>K), 

• s 2 3 / f . » 2 2% 
s n ( / ™ — 2 - ? - ) = *iiP(<y -<» . ) . 

c s, 

(6.3.112) 

'55 

First consider the case of a transformer with constant thickness c - c 
and equal length of the driving and receiving portions a-a. We have 
the inequality 

®i = — ? «& = A2
 n

n , 2 • (6.3.113) 

Before we start solving the frequency equation, we note that the 
transformer is assumed to be long and, for voltage accumulation, the 
entire receiving portion of the transformer should be vibrating in phase. 
Therefore, the transformer should be vibrating at a frequency very close 
to and slightly higher than the infinite beam thickness-shear frequency of 
the receiving portion, with a very small wave number k. Hence we 
should approximately have 

4c> 4 4 ( l -4) 
Then, at this frequency, for the driving portion, a finite wave number can 
be approximately determined by 

P =s;iP(o)2 -al)«fxxp(a>l -ml). (6.3.115) 

For PZT-5H, by trial and error, it can be quickly found that, when a 
= 20 cm and c = 1 cm, the first root of the frequency equation is 59.66 
kHz. It is indeed very close to, and slightly higher than the infinite beam 
frequency GL, of the receiving portion, which is found to be 59.31 kHz. 
We then have ka = 5.4TT and ka = 0.86TT. The corresponding shear and 
potential distributions are shown in Figure 6.3.5. The electric potential 
rises in the receiving portion and a voltage is generated between x\ = 0 
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and x\ = a. Hence this mode can be used as an operating mode of the 
transformer. While in the receiving portion the shear deformation does 
not change sign along the beam and voltage is accumulated, in the 
driving portion the shear changes sign a few times. This is fine for a 
transformer, because this mode can be excited by a few pairs of 
electrodes in the driving portion with alternating signs of driving 
voltages among pairs of driving electrodes. Transformers with a short 
driving portion can also be designed, with fewer pairs of driving 
electrodes. 

„ (i) -(o,o) 

Figure 6.3.5. Shear and potential distributions of the operating mode 

{c =c). M,(1) is marked by triangles, and ^(0'0) by circles. 

The reason that the transformer needs several pairs of driving 
electrodes is the change of sign of the shear deformation in the driving 
portion. This is a result of the fact that the infinite beam frequency of the 
driving portion is lower than that of the receiving portion. The infinite 
beam frequencies of the driving and receiving portions can be made 
close by adjusting c and c. This can lead to a reduction of the wave 
number in the driving portion and hence fewer pairs of driving electrodes. 
To lower the infinite beam shear frequency of the receiving portion, we 
increase the beam thickness c of the receiving portion such that c <c, 
where c and c will be properly adjusted to suit our need as follows. We 
consider the case of equal length of the driving and receiving portions 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



260 Mechanics of Piezoelectric Structures 

(a = a). It can be verified that the following is a limit solution to the 
frequency equation 

K 
ka - — , tan(ka) = -oo, 

(6.3.116) 
K 

ka = — , tan(ka) = oo. 

Then 

k2a2 = a2s^p(co2-co2) = 7r2/4, 

k2a2 = a2s'up(o)2 -a2
D) = n2l\, 

which leads to the frequency 
2 2 

2 2 ft 1 ft 
G> =0)x+ r ^ — = G)„ + — 

4 o S\\P 4a snp 

From Equations (6.3.118) and (6.3.109) we have the condition 

1 1 1 
• + • 

1 

c 544 a 5U c 544(1-Ar15) a sn 

(6.3.117) 

(6.3.118) 

(6.3.119) 

which can be satisfied by adjusting the geometrical parameters c and c. 

The mode shapes of Wj(1) and ^ ( 0 0 ) are shown in Figure 6.3.6, which can 

be driven by one pair of electrodes. 

„ (i) M(o,o) 

-1.2 -0.8 -0.4 0.4 0.8 

JC Ja 

1.2 

Figure 6.3.6. Shear and potential distributions of the operating mode 

( c < c ) . M](1) is marked by triangles, and ^(0'0) by circles. 
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Similarly, it can be verified that the following is also a limit solution 
to the frequency equation 

ka = n+, tan(£a) = 0+ , 

ka = x~, tan(£a) = 0~, 
(6.3.120) 

k a =a snp{a> -<a^) = K , 

k a =a snp(a> -cox) = n , 
(6.3.121) 

2 —2 #" 
2 - * = co„ +-

# 

a 5„/7 
(6.3.122) 

1 1 
• + • 

1 1 

4cz544 als*n 4 :̂̂ ^44(1 — Ar,25) a2s'u 

The mode shapes for the shear deformation and electric potential in this 
case is shown in Figure 6.3.7, which can also be driven by one pair of 
electrodes. 

„ (i) AOfi) 
U\ ,(/> 

x \la 

Figure 6.3.7. Shear and potential distributions of the operating mode 

(c <c). w,(1) is marked by triangles, and ^ ( 0 0 ) by circles. 
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Chapter 7 

Piezoelectric Rings 

In this chapter we consider motions of a piezoelectric ring. Although 
the ring is in a plane, its motion can be three-dimensional. We are 
interested in coupled extensional and flexural motions with shear 
deformations, but not torsion. Most of the equations for rings can be 
obtained from the shell equations, but the constitutive relations should be 
from the beams equations. 

7.1 First-Order Theory 

Consider a differential element of a ring in the x$-x\ plane as shown 
in Figure 7.1.1. For a ring, cylindrical coordinates (6^,r) corresponding 
to ( ax, a2, «3) are sufficient. Specifically, x3 =r cos 0, xx = r sin 0, and 

i 
, « 2 

«3 

2c 

Cross section 

* 3 

Figure 7.1.1. An element of a ring. 
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For a first-order shear deformation theory we make the following 
expansions of the displacement and electric potential: 

Uj s uf0) (a i ,0 + a2uf0) (ax,/) + a3ufA) (a,,t) 

+ aluf0) (a,, 0 + a 2 « 3 MJU) («,, /) + a2i/}°-2) (a,, /), (7.1.1) 

^ s <*(0'0) (a,, 0 + «2^
(1-0) ( a , ,0 + a3^(0',) (a,, /) , 

where the thickness-stretch displacements u2'
0^ and Wj0'̂  will be 

eliminated by stress relaxations. The geometry of a ring can be reduced 
from that of a shell with 

Ax =R, A2= 1, 

Rx =R, R2 = oo. 

Then the strains and electric field can be written as: 

Ski-Ski' + aiSki' +aiSkt' , 

Ek=E?»+a2Er+a3Er. 

The zero-order strains are 

(7.1.2) 

(7.1.3) 

1 duf ,(0,0) , ,(0,0) 
~(0,0) _ 1 « ^ 1 « 3 0,(0,0) _ (1,0) 

4̂, oa, R 
C(0,0) _ (0,1) 9 r,(0,0) _ (0,1) (1,0) 

33 — 3 ' ^ 2 3 — 2 3 ' 

,,(0,0) i a,.(0,0) (7.1.4) 
2^(0,0) = M(o,i) _Jf\ +

 i au3 \<•'•-*> 
R Ax da, 

Ax da, 

Sf2 , S$ and Sf$ will be eliminated by stress relaxations. For the first-
order strains, we only need the following expressions: 

r _ i dur, 4» = i dur t 
Ax dax R Ax dax 

.m i dur *r„ i ̂ r (7'L5) 
«ii — _ — : — i — z — = • Ax dax R Ax da 
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The rest of the first-order strains will be eliminated by stress relaxations. 
The relevant electric fields are 

£(0,0) = _ i _ ^ _ ; £(o,o) = ^(i,o) ^ ^(0,0) = _^(o,i) s 

Ax dax 

£ ( , , 0 ) = _ _ l _ M ! l j Eil-0)=0, E™=0, (7.1.6) 
Ax dax 

E\ W ) = _ J _ ^ _ , £ f i ) = o, £|0-1>=0. 
Ax dax 

The equations of motion and the charge equations are 

R 

and 

1 

A 
l 

A 
l 

dtfii 
dax 

8Ql2 
dax 

dQn 

+ F^=Apbcu^\ (7.1.7) 

-Nxx- + F^=Apbcuffi\ 
Ax dax

 u R 3 H 3 

_ L ^ r _ e i 2 + F ( , o ) = i ^ , a . o ) ; 

^ 5a, 3 

J, 5a, ^13 ' 3 ' ' 

1 5A(0'0) 1 ] _ + ±/)(o,o)+jD(o,o)=() ; 
Ax dax R 

1 SA(1>0) 1 
^ 5a, i? 

_ 1 _ S ^ + 1 (o.i) _ ^(0.0) +jD(o,D = 0 j 

4 3a, i? 

(7.1.8) 

] _ + i.Z)0.o) _^(o.o) +Z)0,o) = 0 ; ( 7 j 9 ) 
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where the resultants are defined by 

{Nn,Qn,Qn} = {T$\T$\T^}=\TijdA, 

M{m,n) =T(m,n) = f J ^ " ^ (7.1.10) 
JA 

Df* = lAD,a;a;dA. 

A = Abe is the cross sectional area. The surface and body loads are 

Fjm-n) =bm [c[T2J(b)-(-lTT2j(-b)]a?da3 

+ cn £b[T3j(c)-(-iyT3j(-c)]a?da2 

+ £ pfrfa^dA, (7.1.11) 

/)<»•»>=&» [[D2(b)-(-l)mD2(-b)]a^a3 

+ c" £ [D3 (c) - (-1)" D3 (-c)]a?da2. 

The constitutive relations are the same as those in the first-order theory 
of beams 

T™ = AbcdS'^S^ --e'^rh a,p = 1,5,6, 

Tr=^(cusr-ekA
mx 

Tr=^f(cnsr-enEr), 

(7.1.13) 

(7.1.14) 
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Ca0~Caf) CaXClftCftfi' eia~eia ei/jCfdCAa> 

*ik = £,k + e u c l i % » <x>P = !>5>6> ^ /">v = 23,4, (7.1.15) 

_ _ ] _ _ e ^ _ _ T dndkX 
'-ll ~ ' eil _ ' bik~ bik 

With successive substitutions, Equations (7.1.7) through (7.1.9) can be 
written as eight equations for Ml

(0-0), uJQfi\ uf'°\ Ml
(1'0), u^\ f'°\ f'0) 

and 0((U). For end conditions we can prescribe 

7;(0'0) or Ml
(0'0), 7f'0) or uf'°\ 7f°> or uf'°\ 

T™ or M,(,'0), T™ or u™, (7.1.16) 
(̂o.o) o r A(o.o)5 ^o.o) o r Dp.o)> ^(o,D o r A(o,i)_ 

7.2 Classical Theory 

The classical theory for flexure can be obtained from the first-order 
theory by two approximations, i.e., dropping the rotatory inertia and 
making the shear strains vanish. The resulting equations are 

_ L ^ i L + a I + F/o.o) =4pbcii[0'°\ 
Ax dax *u R ' H ! 

1 M2+F(o,o)=4pbcUio,o)^ ( 7 2 1 ) 

Ax dax 

I ^ L _ J V I + F M =4p6c«<0-0>, 

1 9A(0'0) 1 
M 3 

Ax dax R 
+-z>r)+z)(0'0)=o, 

LdD?'0) + 1/jO.o) _^(0.0) + ^(1.0) = 0> ( ? 2 2 ) 

Ax dax R 

_LdD?'l) + I/)(0.1) _ D(0.0) + £(0,1) = Qj 

.4, 9a, /? 
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T^ =Abc{c[xS[0fi) -e'aEffi)\ 

A(0'0)=4M?^r0)+44°'0))> 

Tr=^(cnsr-ekiEr), 

^=^f(cusr-enErx 

1 d,A0^ iA°'0) 
e(0,0) _ l ou\ , «3 

" 1 1 — — : < 

Ax dax R 

CO.O) „ X ° " l o(0,l) ^ 1 C"l 
t j j j = , i 3 j , = 

Al da, Ax da, 

(7.2.3) 

(7.2.4) 

(7.2.5) 

1 / W ( 1 , 0 ) 1 r)MW) 

Qn=^r-^-^r, Qn-y-^-^r, (7.2.6) 
Y4, oa, .4, oa, 

(7.2.7) 

M(i.o) = _ _ L ^ 1 _ 5 (o.i) = _ J_^^ + ii_ ( 7 2 8 ) 

4̂, 5a, yij 5a, i? 

With successive substitutions, Equations (7.2.1) and (7.2.2) can be 
written as six equations for Ml

(0'0), u2
m, uffi), f'°\ f'0) and f». For 

end conditions we can prescribe 

7f-0) or Ml
(0-0), 4°-0) or uf°\ T^0) or Mf0), 

fl,.(0,0) = (0,0) 

70 .0 ) o r ^ 2 _ 9 ^(0,1) Q r ^ _ ( 7 2 8 ) 

3a, 9a, 
0<o.o) o r A (o > 0 ) ) 0(i;o) o r A ( . , o ) ; 0(0,1) o r A(o,i) _ 
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A more physical development of the classical theory of a piezoelectric 
ring can be found in [71]. 

7.3 Radial Vibration of a Ceramic Ring 

As an application of the equations obtained, consider axi-symmetric 
radial vibrations of a thin ceramic ring with radial poling, electroded on 
its inner and outer surfaces (see Figure 7.3.1). 

Figure 7.3.1. A ceramic ring with radial poling. 

Let R be the mean radius. We assume that R»2b»2c . The 
electrodes are shorted so that the lowest order electric fields vanish. 
From Equation (7.2.1)3 we have 

where 

1 (0,0) -Nu — = 4pbcu3 

Ni^TW^tbcc^S™, 

£(0,0) 
.(0,0) 
h 

R 

(7.3.1) 

(7.3.2) 

(7.3.3) 

(7.3.4) 

With successive substitutions, Equation (7.3.1) becomes 

1 7/°>0) 

>n IT 
(7.3.5) 
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For time-harmonic motions, the frequency is given by 

psuR
2 

which is the same as the result given in [9]. 
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Chapter 8 

Piezoelectric Parallelepipeds 

In this chapter, zero-dimensional equations for motions of a 
piezoelectric parallelepiped are derived from the three-dimensional 
equations for linear piezoelectricity by triple power series expansions of 
the mechanical displacement and electric potential in the length, width 
and thickness directions. The equations obtained are convenient to use 
when modeling the motion of a piezoelectric parallelepiped in a 
particular vibration mode. Many piezoelectric devices are in essentially 
single-mode vibrations. For these devices the zero-dimensional theory 
can yield results useful for many purposes. The lowest order equations 
obtained can describe motions with homogeneous deformations and 
uniform electric fields. The material in this chapter is mainly from [72]. 

8.1 Power Series Expansion 

Consider a piezoelectric rectangular parallelepiped as shown in 
Figure 8.1.1. The coordinate system is formed by the centroidal principal 
axes. 

Figure 8.1.1. A rectangular piezoelectric parallelepiped. 
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To develop a zero-dimensional theory, we make the following 
expansions of the mechanical displacement vector and the electrostatic 
potential: 

uj (*, ,x2,x3,t) = £ x[x^xn,ufm'n) (0, 
l,m,n=0 

</>(Xi, x2 ,x3, t) = ]T xix^xn
3^'-m'n) (t). 

I,m,n=0 

Then the strains and the electric field can be written as 

C _ V v ' v « v " c(',m,n) 

l,m,n=0 

where 

l,m,n=0 

sy**) =I[(/+i)(^ lMy+i'm>" )+snu\M>m>n)) 

Ef'm'n) =-Sn{l + \)f+x'm-n) 

- Si2 (m + l)^(/'m+1'") - Sa (n + X)^"^. 

(8.1.1) 

(8.1.2) 

+ (m + l)(Snufm+l'n) + SJ2u«-m+1-n)) (8.1.3) 

(8.1.4) 

Substituting Equation (8.1.1) into the variational formulation of linear 
piezoelectricity in Equation (1.2.26), with integration by parts, for 

independent variations of Sufm,n) and S0(-''m,n), we obtain the following 

zero-dimensional equations of motion and electrostatics: 

_lT(l-\,m,n) _mTV,»-l,n) _nTV*>*-*> 

+ F?'m* = P £ * / + m , « + ^ W ) > (8-1-5) 
p,q,r=0 

_lD(l-Um,n) _mDV*-U) _nD(l,n>,n-\) +D(.l,m,n) = ^ 
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where the stress and the electric displacement of various orders are 
defined by 

2j'-"-"> = I TijX[x^x"3dV, 

(8.1.6) 

V = Sabc is the volume of the parallelepiped. Surface traction, surface 
charge and body force of various orders have the following expressions: 

p(l,m,n) _ j(l,m,n) + ~f(l,m,n) 

Tj''m'n) = Ldx2 £«k 3 Pi , (* i = « ) - ( - ! ) % ( * . =-a)]a'x!?x"3 

+ J[ dxx £dx3[T2J (x2 =b)- (-l)m T2J (x2 = -b)]bmx[x"z (8.1.7) 

+ [jx, lbdx2[Ty{x, = c ) - ( - l ) % ( x 3 = -c)]cnx[x'2
n, 

/,<'•"•"> = I ffjtexSdV, 

DU,m,n) = j * <fe2 £ <&3[D,(JC, =a)-(-Y)'Dl(xl =-a)]a'jc2
mx3" 

+ f * i f ^ 3 [^2(^2 =6)-(-l)",-D2(-3c2 =-A)]*"^'*" (8.1.8) 

+ f A , [* <k2[Z>3(*3 =c ) - ( - l ) "D 3 (x 3 = -c)]c"*1'*2". 
J-a J-b 

Bi+P,m+q,n+r is a geometric quantity defined by 

D _ f r
l+Pr

m+ix"
+rdV 

nl+p,m+q,n+r~ ]y
 x\ x2 x3 a v 

Sa'+p+1b'n+',+lc"+r+l , (8.1.9) 

(l + p + \)(m+q + \)(n + r + \) 
0, else. 

, 1 + p,m + q,n + r even, 
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The zero-dimensional constitutive relations are 
00 

T(l,m,n) _ " V D / „ v(p,q,r) f(P,qs)\ 
1ij - / .•Dl+D.m+a.n+r\ciikli:>kl ekijnk h 

P,q,r=0 

00 

/ ) ( ' • '»• '")_ V 1 D /> c(P,?,'-) , «, F<.P.<l.r)\ 
u i ~ / 1

J}l+p.m+a.n+r\eiklc>kl + bik£'k )> 
P,q,r=0 

or, with the compact matrix notation, for M, N = 1, 2, ..., 6 
00 

T(l,m,n) _ V"1
 R , a(p,q,r) p<.P,9,r)\ 

1M ~ J£J
nl+p,m+q,n+r\cMNL3N ^kM^k h 

p,q,r=o 

(8.1.10) 

(8.1.11) 

- ^ i _ / .Dl+Djn+gjn+r\eiNAN +EiktLk )• 

p,q,r=o 

With successive substitutions, these equations can be written as ordinary 
differential equations for the mechanical displacements and electric 
potentials of various orders. 

8.2 Zero-Order Equations 

We keep u<°- °'0), W?-0-°\ Mf'-0>, a f 0 ^ , ^°-°>, ^ W , and ^ w \ 

and neglect all higher order displacements and potentials. For (l,m,n) = 
(0,0,0), (1,0,0), (0,1,0) and (0,0,1), we have the following equations of 
motion and electrostatics: 

F™ = p$abcu?>°'°\ 
£(0.0.0) = 0 > 

(8.2.1) 

. j(o,o,o) + ^0,0,0) _ 8a be „(1A0) 
ly y 3 J' ' (8.2.2) 

_n(o.o.o)+ 2)0.0.0) = Q 
'\ 

_r(OAO)+F(o,i,o)= 8a^£„(0,1.o) 
7 v 3 J ' (8.2.3) 

-£>f°-0)+Z)(0-1-0)=0, 
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_r(o,o,o) E,(O,O,I) = %abc (0>0il) 
3) j 3 7 ' 

_Z)(o,o,o)+£)(o,o,i)=0 

The constitutive relations for the above equations are 

Drfi)=Sabc(eiNSr'0)+eikEr'0)), 

in which the zero-order strains and electric fields are given by 

^(0 ,0 ,0) _ M(l,0,0) £,(0,0,0) _ M(0,0,l) + M(0,l ,0) 

£•(0,0,0) _ M(0,l,0) £,(0,0,0) _ M(l,0,0) + u (0 ,0 , l ) 

0(0,0,0) _ (0,0,1) o(0,0,0) _ (0,1,0) (1,0,0) 

i 3 3 — M3 , i 3 6 — Wj + M 2 > 

£(o,o,o) = _ (̂i,o,o) 5 £(o,o,o) = _ (̂o,i,o) ̂  £(o,o,0) = _ (̂o,o,i) _ ( 8 2 J ) 

These equations can be written as equations for uj°'°'0), uf'0,0^, «j0 '1,0), 

M(o,o,i) ̂  (̂i,o,o) ̂  (̂o,i,o) a n d 0(o,o,i) ̂  w h i c h g o v e m t h e r i g i d b o d y m o t i o n 5 

homogeneous stretching and shearing deformations of the parallelepiped 
and uniform electric fields. 

8.3 A Piezoelectric Gyroscope 

As an application of the zero-dimensional theory developed above, 
we revisit the thickness-shear ceramic plate piezoelectric gyroscope 
analyzed in the fourth section of the second chapter. Consider the 
rectangular ceramic plate shown in Figure 8.3.1. 

The plate is poled in the thickness direction. A driving voltage V\ is 
applied across the lateral electrodes at x\ = ±a to excite the plate into 
thickness-shear motion u\ in the x\ direction. When the plate is rotating 
about the x3 axis, the Coriolis force F2 causes a thickness-shear motion u2 

in the x2 direction. This shear in the x2 direction generates a voltage V2 

between x2 = ±b, which can be used to detect the angular rate Q. 

(8.2.4) 

(8.2.5) 

(8.2.6) 
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Figure 8.3.1. A thickness-shear piezoelectric gyroscope. 

8.3.1 Governing equations 

The lowest order zero-dimensional equations in the previous section 
are for a parallelepiped. In the derivation, there are no assumptions made 
on the relative magnitude of the length a, width b, and thickness c. The 
equations can be used to analyze the rectangular plate gyroscope in 
Figure 8.3.1 as long as the plate is in almost homogeneous thickness-
shear vibration, which is the operating mode of the gyroscope. The 
equations for shear motions u[°'QX> and uf'0^ are 

_7-3(0.0.0) = p 8 a ^ ( „ ( 0 > 0 , 1 ) _ 2 Q j i (o ,o , i ) _ Q 2 W ( O , O , I ) X 

3
 3 (8-3.1) 

-^o.o.o) =/,8a6c_(„(0,o,1) +2Qti(o,o,D _Q2M(o,o,i)x 

where we have included Coriolis and centripetal accelerations and 
omitted the surface and body force terms which are not present in our 
gyroscope problem. The coordinate system is assumed to be rotating 
with the gyroscope. For piezoelectric gyroscopes, the Coriolis 
acceleration is responsible for the sensing mechanism. The centripetal 
acceleration can be neglected for most purposes. This is because 
piezoelectric gyroscopes are small sensors operating near resonance with 
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high frequencies. Usually Q, is much smaller than the operating 
frequency. Therefore the centripetal acceleration, the third terms on the 
right hand sides of Equation (8.3.1)i2, which are quadratic in Q, are 
small compared with the Corioils acceleration, the second terms of the 
equations. The relevant constitutive relations take the following form: 

r3r-o)=*abc(c4ysr-o) - e15KEro)), 

Dr0)^abc(el5KSr'0)
+euErfi)), 

Z)f°-0) =Sabc(el5KS<0fifi) + * 1 1 £ 2
m o ) ) . 

In Equations (8.3.2) and (8.3.3) we have introduced a thickness-shear 
correction factor K to compensate for the error caused by truncating the 

series. For a ceramic plate we have K2 = n2 /12 when the plate is poled 
in the thickness direction. For convenience we introduce the notation 

Then 

u{0M=U„ u2°
M=U2, 

^°'0)=Vl/2a, <f>(0X0)=V2/2b. 

s?-°v=u2, sfA0)=uu 
E™=-Vx/2a, E^0fi)=-V2/2b. 

With successive substitutions, we obtain 

-CAAK2UX -eX5KVx /2a = p—(Ul -2QU2 - Q 2 ^ ) . 

c 2 
-C44K

2U2 -e15KV2 I2b = p—{U2 + 2QC/, -Q2U2), 

(8.3.4) 

(8.3.5) 

(8.3.6) 

(8.3.7) 
Df'm = %abc(el5KUx -enVx 12a), 

D?A0) =Sabc(el5nU2 -enV2 12b). 

The total electric charge on the electrodes at x\ = a or xi = b and the 
electric currents flowing out of them are given by 

ft = -A(°'°'0) «2a), Q2 = -Drfi) H2b), ( 8 3 8 ) 

/ , = - & , I2=-Q2. 
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The driving voltage V\ is usually considered known and is time-harmonic. 
The sensing electrodes at x2 = ±b are usually connected by an output 
circuit with impedance Z for harmonic motions. In the special cases 
when Z = 0 or oo, we have short or open output circuit with V2 = 0 or I2 = 
0. In general, neither V2 nor I2 is known and a circuit equation is needed. 
Let the known time-harmonic driving voltage be Vx = iVx exp(/6rf) . 
Introducing the complex notation 

Ux = iUx expQwt), U2 = U2 exp(ioX), 

I2 = I2 exp(/6rf), V2 = V2 exp(ia>t), 

we can write the circuit condition as 

I2=V2/Z. (8.3.10) 

From Equations (8.3.7)2, (8.3.8)2,4 and (8.3.10), we obtain 

4acico(el5tdJ2 -euV2 /2b) = V2/Z. (8.3.11) 

Then we have the following equations: 

-C4 4K-2£/, -eXiKVx 12a 

c2 — — — 
= p—{-(Q2UX -2QcoU2 -Q2UX), 

-C44K
2U2 -eX5KV2 12b (8.3.12) 

r2 — — — 
= p—(-co2U2 -2Qo>Ux -n2U2), 

4ac<a(el5KU2 -sxxV2 12b) = V2 /iZ(co). 

Equation (8.3.12) represent three linear algebraic equations for Ux, U2 

and V2 in which Vx is the inhomogeneous driving term. In general Z is a 

function of a>. The specific form of this function depends on the structure 
of the load circuit. 

8.3.2 Free vibration 

For free vibrations we set Vx = 0 , which physically means that the 
driving electrodes are shorted. Then Equation (8.3.12) reduces to a 
system of homogeneous equations for Ux, U2 and V2. For nontrivial 
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solutions, the determinant of the coefficient matrix must vanish, which 
leads to the following frequency equation: 

A(o)) = (G)2 +Q2 -col)2 

- 4Q2co2 - X((D)CDI {a1 + Q2 - <y2) = 0, 
(8.3.13) 

where we have denoted 

2 3 c 4 4 y 3 / - , \ _ *T5 

pc 1 + Z2(CO)/Z(G)) 

2 
(8.3.14) 

lr2 __fi5__ 7 _ 1 - _£n4ac 
£uc44 i<yC2 2o 

<yw is the lowest thickness-shear resonant frequency of an elastic plate 
with shear constant c44, mass density p, and thickness 2c. The correction 
factor K makes this frequency to be the same as that obtained from the 
three-dimensional equations. k2

5 is an electro-mechanical coupling 
factor that represents the strength of this coupling of the material. Cj is a 
static capacitance. Equation (8.3.13) can be written in the following form: 

co2 = ( 1 - 4 ^ + 0 ' ±Uco2
xJl + ^ ^ - • (8.3.15) 

2 2 \ X coK 

Strictly speaking, Equation (8.3.15) is not a frequency solution to 
Equation (8.3.13) because, in general, A is a function of co. In the special 
case of shorted output electrodes we have Z = 0, A = 0. Then Equation 
(8.3.15) reduces to 

co = (oa,±n, (8.3.16) 

which is a frequency solution. When the output electrodes are open we 
have Z = °°, A = k2

5. In this case Equation (8.3.15) also represents a 
frequency solution. Piezoelectric gyroscopes usually operate under the 
condition that Q « cox. From Equation (8.3.15) we can see that, for 
small Q, and open output electrodes, the effect of Q on co is quadratic. 
This is different from the special case of shorted output electrodes as 
shown by Equation (8.3.16). If the load circuit is essentially capacitive 
with a capacitance C, we have Z = \l{icoC) and Z2IZ = C/C2 which is 
independent of CO. Then Equation (8.3.15) represents a frequency 
solution. 
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As an example, consider PZT-5H. The relation of ft) versus Q, for 
Z/Z2 = 0, 0.2, and °° is plotted in Figure 8.3.2. For each value of Z, there 
are two frequencies that represent the two lowest modes of thickness-
shear vibration. For the case of shorted output electrodes (Z = 0), there 
are no electric fields because the driving electrodes are also shorted. In 
this case the piezoelectric stiffening effect due to electric fields does not 
exist. Therefore the two resonant frequencies are the same when there is 
no rotation, because ceramics are transversely isotropic in the X\-X2 plane. 
However, rotation will cause these two frequencies to split. When the 
receiving electrodes are not shorted, there is an electric field in the x2 

direction that causes stiffening of the material and hence higher resonant 
frequencies. In this case, even if the plate is not rotating, the two shear 
frequencies are different. 

1.4 

1.2 

0.8 

co/a>a 

— Z/Z2 = 0 

-*-ZIZ2 = 0.2 

—~Z/Z2 = °° 

QJa>« 

0.00 0.01 0.02 0.03 0.04 0.05 

Figure 8.3.2. Resonant frequency versus the rotation rate Q. 

0) versus Z for the case of a capacitive output circuit is plotted in 
Figure 8.3.3 for fixed Q/mx = 0, 0.025, and 0.05. The figure shows that 
the resonant frequencies vary according to the load. Together with the 
dependence of frequency on the rotation rate shown in Figure 8.3.2, 
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the load dependence of frequency further complicates the design of these 
gyroscopes because the resonant frequencies have to be predicted and 
controlled accurately for the gyroscope to operate in resonant conditions 
with high sensitivity. 

1.2 

1.1 

1.0 

0.9 

0.8 

CO/COa, 

j , * * -—* *' —« • » » 

I 

1 1 - I — 1 1 1 
_ • » » • « • 

- * - n/coM=o 
- • - Q/(ox= 0.025 

- ^ Q/com= 0.05 

i i 

ZJZr 

0.0 0.1 0.2 0.3 0.4 

Figure 8.3.3. Resonant frequency versus the load Z. 

8.3.3 Forced vibration 

For forced vibration analysis, we want to take into consideration 

some effect of damping. We use c*44 = c44(l + iQ~x) for the shear elastic 

constant, where c44 and Q (the quality factor) are real and the value of Q 
for ceramics is usually on the order of 102 to 103. In the following, we fix 
the value of Q as 102 in our calculations. From Equation (8.3.12), we 
obtain the forced vibration solution for the output voltage sensitivity as 

-=- = -(*15) ' 
b 2Q^(^M)2 

a(\ + Z2/Z)A(<0) 
(8.3.17) 
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where 

(*i5)2=-
= 15 

£,,c ll t '44 

, * \2 3 C 44 y 

PC 
(8.3.18) 

Voltage sensitivity as a function of the driving frequency is plotted in 
Figure 8.3.4 for a fixed Q. and two values of Z. It is seen that near the two 
resonant frequencies the sensitivity assumes maxima. The distance 
between the two resonant frequencies depends on Z, as also suggested by 
Figure 8.3.3. Numerical tests also show that if smaller values of Q are 
used in the calculation, the peaks become narrower and higher. 
Theoretically, higher peaks imply higher sensitivity. However, in reality, 
narrower peaks require better control in tuning the device into resonant 
conditions. 

Q = 0.01cya 

Figure 8.3.4. Sensitivity versus the driving frequency (O. 

The dependence of the voltage sensitivity on the rotation rate Q is 
shown in Figure 8.3.5 for a fixed driving frequency near resonance and 
for different values of the load Z. When Q. is much smaller than a>o, 
which is true in most applications of piezoelectric gyroscopes, the 
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relation between the sensitivity and Q is essentially linear. Therefore, in 
the analysis of piezoelectric gyroscopes, very often the centrifugal force 
which represents higher order effects of Q is neglected and the 
contribution to sensitivity is totally from the Coriolis force which is 
linear in Q,. 

4.0 -i 

3.0-

2.0 -

1.0-

0.0-

\v iv\ 
V 2 ' y\\ 

ZIZ2 = 1 

1 

CO = OJoo 

Z/Z2 =0.1 

1 1 

Q/a>a 

0.000 0.005 0.010 0.015 

Figure 8.3.5. Sensitivity versus the rotation rate Q. 

The variation of sensitivity according to the load Z is also of interest 
in practice and is given in Figure 8.3.6 for a fixed driving frequency near 
resonance and for different values of Q.. For small loads the sensing 
electrodes are almost shorted and the voltage sensitivity is small although 
the output current may be large. As the load increases, the sensitivity 
increases and exhibits an almost linear range. When the load is large 
enough the output electrodes are essentially open with the output voltage 
saturated and a very small output current. 

Finally, we note that in the case of open output electrodes (Z = °°) 
and without material damping, if the effects of piezoelectric coupling 
and rotation on resonant frequencies are neglected, Equation (8.3.17) 
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reduces to 

S^A4^^_4±_^L_, (8.3.19) 
Vx

 i5 a(co2-coif X52a(co-wJ 

which shows the most basic behavior of the gyroscope (compare to 
Equation (2.4.136)). 

Figures 8.3.4 through 8.3.6 are qualitatively similar to those of the 
mass-rod gyroscope in [9]. 

3.0-

2 .5 -

2.0-

1.5 

1.0 

0.5 

0.0 

0.0 0.1 0.2 0.3 0.4 0.5 

Figure 8.3.6. Sensitivity versus the load Z. 

8.4 A Transformer — Forced Vibration Analysis 

A free vibration analysis of a thickness-shear piezoelectric 
transformer was performed in the third section of the sixth chapter using 
one-dimensional equations. Frequency equation and modes were 
obtained, showing the mechanism of the transformer. For a complete 
analysis of a piezoelectric transformer, a forced vibration analysis is 
necessary. Although the thickness-shear transformer analyzed in the third 
section of the sixth chapter is a thin rod (see Figure 8.4.1), its operating 

co = co„ 

Q/eOo, = 0.005 

ZIZ, 
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modes shown in Figure 6.3.6 or Figure 6.3.7 are slowly varying in the 
driving and receiving portions when the transformer is long, and 
therefore can be approximated by the zero-dimensional equations. In this 
section we perform a forced vibration analysis of the transformer using 
zero-dimensional equations. 

0=^(0 

Figure 8.4.1. A thickness-shear piezoelectric transformer. 

8.4.1 Governing equations 

The driving portion is determined by -/ < jti < 0. The receiving 
portion is 0 < x\ < I. V\ is the input voltage and V-i is the output voltage. 
For each portion of the transformer there exists a local Cartesian 
coordinate system JC, with its origin at the center of the portion and 
directions along the global system Xt. The thickness-shear motion we are 
considering can be approximately represented by 

.x3ux 

(0,0,1) u2 = 0, w3 = 0. (8.4.1) 

In the driving portion the electric potential is the known driving 
potential with 

0(o.o,o) =vl2f ^o.o.i) =v/(2hy 
(8.4.2) 
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From Equation (8.2.4)i, setting j = 1, we obtain the equation of motion 
as 

. ^ 0 . 0 . 0 ) + ^(0,0,.) = p ^ g ( 0 A i ) ; (g.4.3) 

where 

(̂0.0.1) = r f Tn{x = 0-)X3dX2dX3. (8.4.4) 
J-w J-h 

(8.4.5) 

Relevant constitutive relations are taken from Equation (8.2.5) 

T$fifi) =mh{c„K2S?fi>0) -e15K£3
(0A0)), 

In Equation (8.4.5) we have introduced a thickness-shear correction 
factor K. For a ceramic parallelepiped we can use K2 = n21\2 as an 
approximation. For the charge and current on the electrode at X^ = h, 
we have 

Q,=-D?^l(2h), /,=-e,. (8.4.6) 

In the receiving portion, the electric potential can be written as 

<f>(0A0) = V2/2, <?>iW)=V2/(2l), 
(8.4.7) 

2 ' *-> r ~'i> 

where V2 is unknown. The equation of motion is 

_T(0A0)+F(0M=p^Lu(0M^ ( 8 4 8 ) 

where 
eh 

F](o,o,.) T f -Tu(X,=V)X,dX2dX,. (8.4.9) 
J-w J-h 

(8.4.10) 

Relevant constitutive relations are 

T ™ =&lwh(cuK
2S^°-0) -e15KEr>0)), 

The electric charge on the electrode at X\ - 21 and the electric current 
flows out of the electrode are given by 

Q2=-Drfi)K2l), I2=-Q2. (8.4.11) 
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In deriving the above we have assumed that there is no body force and 
made use of the traction-free boundary conditions at X\ = 21, X2 = ±w, 
andX3 = ±/j. 

Substituting Equation (8.4.10)i into Equation (8.4.8), and Equation 
(8.4.5)i into Equation (8.4.3), adding the resulting equations and making 
use of the continuity conditions 

F1
(0 '°'I)(^1=0-) = -F1

(0-0 '1)(^1=0+), 

M 1 ( Z 1 = 0 - ) = W I ( ^ 1 = 0 + ) , 

we obtain 

(8.4.12) 

= ^p(hvh3+Jwh3yul0Al). 

-&wh(cA4K
2S?m -ei5KE?A0)) (8.4.13) 

3 ' 

Under the known time-harmonic driving voltage Vx = Vx exp(icot), for 

time-harmonic solutions we employ the complex notation and write the 
unknowns as 

u[0A1) = u exp(/fttf), V2 = V2 exp(/<s#), (8 4 14) 

Ix = 7, exp(/6#), Ii - h exp(ifijf). 

The receiving electrodes are connected by an output circuit which, when 
the motion is time-harmonic, has an impedance ZL. We have the 
following circuit condition 

I2=V2/ZL. (8.4.15) 

With successive substitutions, we obtain the following two equations for 
u and V2, driven by Vx 

- &lwh(c44K
2u + eX5K—) - Slwh(c44K

2u + e15ic—L) 
21 2h 

= --ptfwh3 +lwh3)(D2u, (8.4.16) 

_ V V 
4whico(el5KU - sn -M = -*-. 

11 LL 
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Once u and V2 are obtained, the currents are given by 

I2 = Awhia>{eX5m -exx — ) , 
^ (8.4.17) 

Ix = 4lwico(eX5Ku -sxx —^=). 
1h 

8.4.2 Forced vibration analysis 

We consider the case oi 1 = 1 and w = w . Solving Equations (8.4.16) 
for u and V2, we obtain the transforming ratio and normalized input and 
output currents as 

v2 £ =l 
Vx (\ + h/h)(\ + Z2/ZL)(o)2leol-Y)-kx\hlh h' 

I k2 I 
12 _ "15 ' 

(Vx/Z2) (l + h/h)(l + ZL/Z2)(co2Ico2 -\)-kx\hZLl{hZ2) h 

/, = 1 _ k{5(l + Z2/ZL) 
(Vx/Zx) ' {\ + hlh){\ + Z2IZL){oi210)1-1)-^/^ 

(8.4.18) 
where 

4 j _ 3A:2C44 

fnc44 p(h-hh+h) 

Zx=-L., Cx =
 £-A, (8.4.19) 

ityC, 2/? 

7 - _ ! _ r - f i i 4 ^ 
iccC2 21 

In Equation (8.4.19), a>x is the thickness-shear resonant frequency for 
shorted receiving electrodes (ZL = 0) as predicted by the zero-
dimensional theory, C\ and C2 are the static capacitance of the driving 
and receiving portions, and Z\ and Z2 are the impedance of the two 
portions. As a numerical example, we consider PZT-5H. Material 
damping is included by allowing cpq to assume complex values. c44 is 
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replaced by c44(1 + iQ x), where c44 and Q are real and the value of Q is 
fixed to be 102 in the calculation. 

The transforming ratio \V2IVX\ as a function of the driving 
frequency 0) is shown in Figure 8.4.2. When 0) is close to the resonant 
frequency &>x, the transforming ratio assumes maximum. 

300 

200 

100 

IK2/F1 

— 1 1 

400 500 
Frequency (kHz) 

300 600 

Figure 8.4.2. Transforming ratio versus driving frequency. 

\V2IV1\ versus the aspect ratio II h (the length of the receiving 
portion over the thickness of the driving portion) is plotted in 
Figure 8.4.3. An essentially linearly increasing behavior is observed. 
Figure 8.4.3 exhibits the voltage raising ability of the transformer. For 
large aspect ratios or long and thin transformers, high voltage output can 
be achieved. The zero-dimensional equations are particularly suitable for 
long and thin transformers with almost uniform fields. The dependence 
of the transforming ration on llh can also be seen from the factor of 
IIh in Equation (8.4.18)1. 

It can be concluded from Equation (8.4.18)1 that for small ZL or 
almost shorted receiving electrodes, V2IVX as a function of ZL is linear 
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Figure 8.4.3. Transforming ratio versus aspect ratio. 

in ZL. For very large ZL or almost open receiving electrodes, the 
transforming ratio approaches a constant (saturation). We note from 
Equation (8.4.18)2 that the output current I2 has such a dependence on 
ZL that when Z is small 72 has a finite value and when ZL is large I2 

approaches zero. This is as expected. \V2/V] | as a function of ZL is 
shown in Figure 8.4.4. 

The input and output powers of the transformer, in terms of the 
complex notation, are given by 

Px=\(hV'+ixVx\ P2=\(I2V;+r2V2). (8.4.20) 

Then the efficiency of the transformer is 

r] = P2/Pl. (8.4.21) 

It can be concluded from Equations (8.4.18), (8.4.20) and (8.4.21) that 
the efficiency as a function of Z behaves as follows. For small loads, r\ 
depends on the load linearly. For large loads, r\ decreases to zero. The 
efficiency as a function of ZL is shown in Figure 8.4.5. 

The behaviors shown in Figures 8.4.2 through 8.4.5 for the 
thickness-shear transformer are qualitatively very similar to the 
behaviors of the Rosen extensional transformer discussed in [9]. 
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2000 

Figure 8.4.4. Transforming ratio versus load. 
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Figure 8.4.5. Efficiency versus load. 
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Kronecker delta 
Shifter 
Permutation tensor 
Reference position of a material point 
Present position of a material point 
Mechanical displacement vector 
Jacobian 
Deformation tensor 
Finite strain tensor 

Linear strain tensor 
Velocity vector 
Deformation rate tensor 
Spin tensor 
Material time derivative 
Reference mass density (scalar) 
Present mass density 
Free charge density per unit present volume (scalar) 
Free charge density per unit reference volume 
(scalar) 
Surface free charge per unit present area (scalar) 

Surface free charge per unit reference area (scalar) 
Free charge (scalar) 
Current 
Voltage 
Impedance 
Permittivity of free space 
Electrostatic potential 
Electric field 
Electric polarization per unit present volume 
Electric polarization per unit mass 
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Dt — Electric displacement vector 
— Reference electric field vector 

— Reference electric polarization vector 

— Reference electric displacement vector 
— Mechanical body force per unit mass 
— Cauchy stress tensor 

— Electrostatic stress tensor 

— Symmetric stress tensor in spatial, two-point, and 

material form 

— Symmetric Maxwell stress tensor in spatial, two-

point, and material form 

— Total stress tensor in spatial, two-point, and material 

form 

— KUSJM 

— Linear stress tensor 

— Mechanical surface traction per unit reference area 

— Mechanical surface traction per unit present area 

— Free energy per unit mass 
— Electric enthalpy per unit volume 

— Plate material constants obtained by relaxing T3j . 

— Plate material constants obtained by relaxing T33. 

— ^pq-^kp modified by shear correction factors. 

— Beam material constants obtained by relaxing 

T2~T6. 
— Beam material constants obtained by relaxing 

T2~T4. 

— cap»^ica modified by shear correction factors. 

— Thickness-shear frequency of an unbounded plate. 
— Thickness-shear correction factor. 
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Appendix 2 

Electroelastic Material Constants 

Material constants for a few common piezoelectrics are summarized 
below. Numerical results given in this book are calculated from these 
constants. 

Permittivity of free space sQ - 8.854 x 10~12 F/m. 

Polarized ceramics 

The material matrices for PZT-5H are [74] 

p = 7500 kg/m\ 

Kg] 

'12.6 

7.95 

8.41 

0 

0 

, 0 

7.95 

12.6 

8.41 

0 

0 

0 

8.41 

8.41 

11.7 

0 

0 

0 

0 

0 

0 

2.3 

0 

0 

0 

0 

0 

0 

2.3 

0 

0 

0 

0 

0 

0 

2.325 

xl010N/m2 . 

KJ 
0 

0 

-6.5 

0 0 

0 0 

-6.5 23.3 

0 17 0^ 

17 0 0 

0 0 0, 

C/m2, 
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[**] = 
noos, 0 

0 

v 0 

'1.505 

0 

0 

0 

1700ff0 

0 

0 

0 

1470f, 
oy 

0 

1.505 

0 

0 

0 

1.302 

xlO"8C/(V-m). 

For PZT-5H, an equivalent set of material constants are [74] 

•sn=16.5, $33=20.7, $44=43.5, 

'12 = -4.78, sl3 = -8.45 x 10~" m'/N, 

d3X = -21 A, dl5 = 741, d33 = 593 x 10-12 C/N, 

£-,! = 3130f0, E33 = 3400£0. 

When poling is along other directions, the material matrices can be 
obtained by tensor transformations. For PZT-5H, when poling is along 
the x\ axis, we have 

[Cpq] = 

'11.7 

8.41 

8.41 

0 

0 

v 0 

K] 

8.41 8.41 

12.6 7.95 

7.95 12.6 

0 0 

0 

0 

'23.3 

0 

0 

0 

0 

•6.5 

0 

0 

0 

0 

0 

2.325 

0 

0 

0 

0 

0 

0 

2.3 

0 

0 ^ 

0 

0 

0 

0 

2.3 

xl0 l uN/m' 

6.5 0 0 0 

0 0 0 17 

0 0 17 0 

C/m' 

[£//] = 

'1.302 0 

0 1.505 

V 
0 

0 

0 

0 1.505 

xl0~8C/Vm 
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When poling is along the xj axis 

M 

12.6 8.41 

8.41 

7.95 

0 

0 

0 

11.7 

8.41 

0 

0 

0 

7.95 

8.41 

12.6 

0 

0 

0 

0 

0 

0 

2.3 

0 

0 

0 

0 

0 

0 

2.325 

0 

0 

0 

0 

0 

2.3 

\V> xl0 l uN/m J 

[**] = 

0 0 

-6 .5 23.3 

0 0 

0 

-6.5 

0 

0 0 17N 

0 0 0 

17 0 0 

C/m2, 

[%]= 

("1.505 

0 

0 

0 0 

1.302 0 

0 1.505 

xlO"8C/Vm 

For PZT-G1195 

p = 7500kg /m3 E E 
C\\ = C 22 = 148, '33 : 131, cf2= 76.2, 

'23 : 74.2, '44 = 4=25.4, c, 

'15 -9 .2 , =31 = -2.1, -33 

66-35.9GPa, 

= 9.5C/m2. 

Material constants of a few other polarized ceramics are given in the 
following tables [75]: 

Material 

PZT-4 

PZT-5A 

PZT-6B 

PZT-5H 

Cl l 

13.9 

12.1 

16.8 

12.6 

C12 

7.78 

7.59 

8.47 

7.91 

Cl3 

7.40 

7.54 

8.42 

8.39 

C33 

11.5 

11.1 

16.3 

11.7 

c44 

2.56 

2.11 

3.55 

2.30 

C66 

3.06 

2.26 

4.17 

2.35 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



Appendix 2 301 

Material 

PZT-7A 

PZT-8 

BaTi03 

C\\ 

14.8 

13.7 

15.0 

Cl2 

7.61 

6.99 

6.53 

C\i 

8.13 

7.11 

6.62 

C33 

13.1 

12.3 

14.6 

c44 

2.53 

3.13 

4.39 

C66 

3.60 

3.36 

4.24 

xl010N/m2 

Material 

PZT-4 

PZT-5A 

PZT-6B 

PZT-5H 

PZT-7A 

PZT-8 

BaTi03 

C31 

-5.2 

-5.4 

-0.9 

-6.5 

-2.1 

-4.0 

-4.3 

£33 

15.1 

15.8 

7.1 

23.3 

9.5 

13.2 

17.5 

e\s 

12.7 

12.3 

4.6 

17.0 

9.2 

10.4 

11.4 

C/m2 

d i 

0.646 

0.811 

0.360 

1.505 

0.407 

0.797 

0.987 

£33 

0.562 

0.735 

0.342 

1.302 

0.208 

0.514 

1.116 

x 10"8 C/Vm 

Density 

kg/m3 

PZT-5H 

7500 

PZT-5A 

7750 

PZT-6B 

7550 

PZT-4 

7500 

Density 

kg/m3 

PZT-7A 

7600 

PZT-8 

7600 

BaTi03 

5700 

www.iran-mavad.com 
مرجع دانشجويان و مهندسين مواد



302 Appendix 2 

Quartz 

When referred to the crystal axes, the second-order material 
constants for left-hand quartz have the following values [76]: 

p = 2649 kg/m3, 

['«] = m 

( 86.74 

6.99 

11.91 

-17.91 

0 

0 

6.99 

86.74 

11.91 

17.91 

0 

0 

11.91 

11.91 

107.2 

0 

0 

0 

-17.91 

17.91 

0 

57.94 

0 

0 

0 

0 

0 

0 

57.94 

-17.91 

0 

0 

0 

0 

-17.91 

39.88 

xl09N/m2 

[*»] = 

'0.171 -0.171 0 

0 0 0 

0 0 0 

0.0406 0 0 " 

0 0.0406 -0.171 C/m2 

0 0 0 , 

w = 
39.21 0 

0 

0 

0 

39.21 0 

0 41.03 

xl0~"C/Vm. 

Temperature derivatives of the elastic constants of quartz at 25 °C are 
[77] 

pq 
{\lcpq){dcpqldT) 

(10-6/°C) 

11 

18.16 

33 

-66.60 

12 

-1222 

13 

-178.6 

M 
(\lcpq)(dcpqldT) 

(10-6/°C) 

44 

-89.72 

66 

126.7 

14 

-49.21 
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For quartz there are 31 nonzero third-order elastic constants. 14 are 
given in the following table. These values, at 25 °C, and based on a least-
squares fit, are all in 10u N/m2 [78] 

Constant 

C m 

Cm 

ClB 

Cll4 

Cl23 

Cm 

Cm 

Cl34 

C144 

Cl55 

cm 

C333 

C344 

C444 

Value 

-2.10 

-3.45 

+0.12 

-1.63 

-2.94 

-0.15 

-3.12 

+0.02 

-1.34 

-2.00 

-3.32 

-8.15 

-1.10 

-2.76 

Standard 
error 

0.07 

0.06 

0.06 

0.05 

0.05 

0.04 

0.07 

0.04 

0.07 

0.08 

0.08 

0.18 

0.07 

0.17 

In addition, there are 17 relations among the third-order elastic constants 
of quartz [79] 

_ 1 

C122 _ C 111 + C112 C222' C
156- (ClH+3CUii), 

C166 ~ T ( — 2 C n , — C H 2 +3c222h 

C224 = ~C\ 14 _ ^C124, C256 = —(Cj 14 - C124 ) , 
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C266 ~ S^C\\\ C\ 12 C222)> 

C366 _ ~VC113 C 1 2 3 / ' C456 ~ ~\ C144 + C155.)> 

C 2 2 3 = C 1 1 3 > C 2 3 3 = C 1 3 3 > C 2 3 4 = _ C 1 3 4 > C 2 4 4 ~ C 1 5 5 ' C 2 5 5 = C 1 4 4 > 

C355 ~ C 3 4 4 ' C 3 5 6 = C 1 3 4 > C 4 5 5 = _ C 4 4 4 > C 4 6 6 ~ C 1 2 4 -

For the fourth-order elastic constants there are 69 nonzero ones of 
which 23 are independent [49] 

C 1 1 U ' C3333> C4444> C 6 6 6 6 ' C 1112 ' C1113> C 1 1 2 3 ' C 2 2 1 4 ' C3331» 

C 4 4 5 6 ' C5524> C4443 > C 1133 ' C3344 > C1456 > C 1 1 5 5 ' C1134> C 2 3 5 6 ' 

C4423> C4413> C 3 3 1 4 ' C6614 > C6624 • 

There are 46 relations [49] 

C2222 _ C 1 1 1 1 > C2266 _ , VC1111 c \ m h C 2 2 2 3 _ C 1 1 1 3 ' 

C2221 = C 1 1 1 2 ' C6612 = T ( C 1 1 1 1 _ 4 C 6 6 6 6 - C 1 1 1 2 ) , C 2 2 1 3 = C 1 1 2 3 , 
O 

C1166 = C2266> C1122 = TT ( — C l 111 + 4C1112 + °C6666 )» 

_ 1 , _ x 
C6613 - . VC1113 C1123 J» 

_1 
C5555 _ C4444 ' C4455 _ - C4444 » C6623 ~~ C6613 > 

C1124 - _ C 2 2 1 4 + C6614 + C6624 ' 

C3312 = _ C 1 1 3 3 » C1114 = A _ C 2 2 1 4 +^C66U _ ^ C 6 6 2 4 ) , C 2 2 3 3 = C 1 1 3 3 , 
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2256 — „ ( 2C2 2i4 + 3 C 6 6 1 4 5C 6 6 2 4 ) , Cfi633 — C U 3 3 , c 

C2224 -AC2214 "" ' 6614 + C, 6624 )' 

C3355 - C 3344' '1156 2 
: „ ( 2c2214 + 7c6 6 H c6624), '3332 ' 3 3 3 1 ' 

'1256 _ « ( 2 c 2 2 1 4 + 3C 6 6 1 4 C6 6 2 4 ) , C5 5 3 4 --C 

C6665 _ „ (C6614 C6624 )> 

4442 ~ ^ C 4456 

5514 — 2 C 4 4 5 6 + C 5 5 2 4 , 

C5524» C1234 _ C 1 1 3 4 

C 

-2c 2356' 

4443' 

'2255 = C 4412' 

1356 - 2 C U 3 4 3 C 2 3 5 6 , C5566 ~ C 1456' 

5556 - 3 C 4 4 5 6 , C2234 _ 4 C 2 3 5 6 3C, 134' C3324 _ C 3314' 

c4441 _ 2 C 4 4 5 6 

'1144 ' 4 4 1 2 ' 

' 5524 ' 

'5523 

'6634 

' 4 4 1 3 ' 

'1234 ' 

'2456 

'3356 

'1456 ' 

" ^ 3 3 1 4 ' '5512 

'2244 1155' 

" ' ' 4 4 1 2 ' 

'5513 4423' 

C4466 ~C 1456' '4412 = C, 155 4 ^ 1 4 5 6 ' C3456 _ - (C4423 C4413 )• 

The fourth-order elastic constants are usually unknown. Some scattered 
results are [49] 

' m i = 1.59xl01 3N/m2+20%, 

c3333 =1.84xl01 3N/m2 ±20%, 

and [8] 

'6666 : 77x lO n N/m 2 . 

AT-cut quartz is a special case of rotated Y-cut quartz (G = 35.25°) 
whose material constants are [4] 

^86.74 -8.25 27.15 

-8.25 129.77 -7.42 

27.15 -7.42 102.83 

-3.66 5.7 9.92 

0 0 0 

0 0 0 

[c„]= 

-3.66 

5.7 

9.92 

38.61 

0 

0 

0 

0 

0 

0 

68.81 

2.53 

0 N 

0 

0 

0 

2.53 

29.01; 

xl09N/m2 
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K] 
171 -0.152 • 

0 0 

0 0 

[«*] = 

'39.21 

0 

, o 

•0.0187 

0 

0 

0 

39.82 

0.86 

0.067 0 0 

0 0.108 -0.095 

0 -0.0761 0.067 

0 ^ 

0.86 

40.42 

xlO-12C/Vm. 

C/m' 

Langasite 

The second-order material constants of La3Ga5SiOi4 are [80] 

p = 5743 kg/m3, 

10.475 9.589 -1.412 0 0 

18.875 9.589 1.412 0 0 

9.589 26.14 0 0 0 

1.412 0 5.35 0 0 

0 0 0 5.35 -1.412 

0 0 0 -1.412 4.2 

[Cpq] 

O 8.875 

10.475 

9.589 

-1.412 

0 

0 

\ 

V 

xl010N/m2 

J 

K]= 
.0.44 0.44 0 

0 

0 

[<%] = 

0 

0 

18.92^ 

0 

0 

o 

v 

067.5 

0 

V 0 

-0.08 

0 

0 

0 

18.92f0 

0 

0 0 A 

0.08 0.44 

0 0 

0 

0 

50.7s, 

C/nV 

oy 

0 0 

167.5 0 

0 448.9 

xlO~12C/Vm. 
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The third-order material constants of La3Ga5SiOi4 at 20°C are given 
in [80]. The third-order elastic constants cpqr (in 1010 N/m2) are 

C\\\ 

Cm 

C\U 

Cll4 

cm 

C\U 

cm 

-97.2 

0.7 

-11.6 

-2.2 

0.9 

-2.8 

-72.1 

Cl34 

Cj44 

Cl55 

C222 

C333 

C344 

C444 

-4.1 

-4.0 

-19.8 

-96.5 

-183.4 

-38.9 

20.2 

The third-order piezoelectric effect constants eipq (in C/m2) are 

em 

em 

e\u 

^122 

9.3 I e124 

-3.5 

1.0 

0.7 

^134 

e i44 

^315 

-4.8 

6.9 

-1.7 

-4 

The third-order electrostriction constants Hpq (in lO'^/V2) are 

H„ 
H,2 

HI3 

H14 

-26 

65 

20 

-43 

H31 

H33 

H41 

H44 

-24 

-40 

-170 

-44 

The third-order dielectric permeability em (in 10" F/V) are 
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Lithium Niobate 

The second-order material constants for lithium niobate are [81] 
p = 4700kg/m3, 

'2.03 

0.53 

M = 

0.53 

2.03 

0.75 0.75 

0.09 -0.09 

0 

0 

KY-

0 

0 

0.75 

0.75 

2.45 

0 

0 

0 

0.09 

-0.09 

0 

0.60 

0 

0 

f 0 0 

2.50 2.50 
( 

V 

0 

0 

0.20 0.20 1.30 

0 

0 

0 

0 

0 ^ 

0 

0 

0 

0.60 0.09 

0.09 0.75 

x l0 u N/m : 

0 3.70 

3.70 0 

0 0 

J 

• 2.50^ 

0 

0 j 

C/m' 

[£(,] 

'38.9 0 

0 38.9 

\ 

0 0 

0 

0 

25.7 

xl0-uC/Vm 

The third-order material constants of lithium niobate are given in 
[82]. The third-order elastic constants cpqr (in 10u N/m2) are 

Constant 

Cm 

Cm 

Cl l3 

Cl l4 

cm 

C\24 

cm 

Value 

-21.2 

-5.3 

-5.7 

2.0 

-2.5 

0.4 

-7.8 

Standard 
error 

4.0 

1.2 

1.5 

0.8 

1.0 

0.3 

1.9 
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Constant 

Cm 

C144 

Cl55 

Cm 

cm 

C344 

C444 

Value 

1.5 

-3.0 

-6.7 

-23.3 

-29.6 

-6.8 

-0.3 

Standard 
error 

0.3 

0.2 

0.3 

3.4 

7.2 

0.7 

0.4 

The third-order piezoelectric constants e( (=-k ) are 
1 ipq 

Constant 

ens 

e\\6 

C\2% 

C\2(, 

£135 

e i36 

^145 

^311 

^312 

^313 

^314 

<?333 

^344 

Value 

17.1 

-4.7 

19.9 

-15.9 

19.6 

-0.9 

20.3 

14.7 

13.0 

-10.0 

11.0 

-17.3 

-10.2 

C/m2 

Standard 
error 

6.6 

6.4 

2.1 

5.3 

2.7 

2.7 

5.7 

6.0 

11.4 

8.7 

4.6 

5.9 

5.6 
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The third-order electrostirctive constants lpq (compressed from bijkl + 

£odij$ki -£<>SikSji -s0S,,Skl)(mW9F/m2)are 

Constant 

hi 

hi 

In 

hi 

hi 

hn 

hi 

hn 

Value 

1.11 

2.19 

2.32 

0.19 

-2.76 

1.51 

1.85 

-1.83 

Standard 
error 

0.39 

0.56 

0.67 

0.61 

0.41 

0.17 

0.17 

0.11 

The third-order dielectric constants eip (in 10" F/V) are 

Constant 

£31 

1 £22 

£33 

Value 

-2.81 

-2.40 

-2.91 

Standard 
error 

0.06 

0.09 

0.06 

Lithium Tantalate 

The second-order material constants for lithium tantalate are [81] 

p = 7450kg/m3, 
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[Cpq] 

f 2.33 

0.47 

0.80 

-0.11 

0 

0 

0.47 

2.33 

0.80 

-0.11 

0 

0 

0.80 

0.80 

2.45 

0 

0 

0 

-0.11 

0.11 

0 

0.94 

0 

0 

0 

0 

0 

0 

0.94 

-0.11 

0 

0 

0 

0 

-0.11 

0.93 

xlO1 

KJ = 

f 0 0 0 0 2.6 -1.6A 

1.6 1.6 0 2.6 0 0 

0 0 1.9 0 0 0 

C/m2, 

[%] 

V 

36.3 0 0 ^ 

0 36.3 0 

0 0 38.2y 

xlO_uC/Vm. 

Cadmium Sulfide (CdS) 

The second-order material constants [74]: 

/> = 4820kg/m3, 

c n =9.07 , c33=9.38, c44 =1.504, 

c,2=5.81, c1 3=5.10xl01 0N/m2 , 

-0.21, = 31 -0.24, e3 3=-0.44 C/m3 

su =9.02£0, £33 =9.53^0, e0 =8.854 xl0~12F/m. 
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actuator 122, 133,150, 207 
antiresonance 58 
apparent material constant 16 
beam 225 
Bessel function 56, 221 
bias 12, 168 
bimorph 172, 249 
Bleustein-Gulyaev wave 33, 167 
boundary element 157, 206 
boundary integral equation 206 
buckling 172 
cadmium sulfide 86, 311 
capacitance 28, 104, 278, 287 
Cauchy 34 
ceramic 32, 49, 72, 78, 82, 91, 172, 201, 

231,234,249,268,298 
charge 10, 57 
charge equation 3 
circuit condition 10, 94, 255, 277, 286 
classical flexure 66, 130, 133, 196, 242, 

266 
Coriolis 93, 275 
correction factor 37, 61, 78, 96, 183, 

239 
cubic 19, 179 
current 10, 57 
cutoff frequency 33 
cylindrical coordinates 203, 218, 262 
damping coefficient 186 
degeneracy 116 
Dirac delta function 153 
dispersion relation 33, 48, 66, 115, 117, 

118,121,132,166,222,224 
double resonance 95 
effective material constant 16 
efficiency 289 
eigenvalue problem 104,235, 255 
electromechanical coupling factor 175, 

278 
energy trapping 88, 120 

enthalpy 8 
extension 33,47, 228 
face-shear 33, 47 
finite difference 159 
finite element 142 
first-order theory 58, 127, 147, 168, 

180, 189,235,262 
flexure 

classical (see classical flexure) 
shear deformation 64,132 

forced vibration 27, 185, 280, 283 
four-vector213 
free energy 3, 7, 18,20 
free vibration 25, 82, 104, 185, 201, 

235, 252, 268, 277 
frequency split 279 
Gauss's equation 3 
gyroscope 91, 274 
half-space 150 
harmonic 235 
initial fields (see bias) 
initial stress theory 18, 172 
integral-differential equation 152, 206 
isotropic 64, 68, 70,112, 135 
Kane-Mindlin theory 111 
Kirchhoff34, 36 
Kronecker delta 1, 2 
Lam6 coefficient 190 
Lame constant 64,112 
laminate 145 
langasite 22, 306 
lithium niobate 308 
lithium tantalate 310 
Love wave 167 
matrix notation 11 
membrane theory 199, 204, 211 
Mindlin-Medick theory 111 
monoclinic crystal 23, 98 
motional capacitance 104 
nonlinear 1, 19, 168 
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non-slip condition 222 
orthogonality 107 
overtone 235 
parallelepiped 270 
permittivity 3, 298 
perturbation 214 
piezoelectric stiffening 86, 279 
plate 22 
Poisson 34 
Poisson's effect 41, 58, 236 
Poisson's ratio 65, 142 
polar coordinates 55, 140, 217 
positive-definite 8 
potential 3 
quality factor 186, 280, 288 
quartz 22, 96, 102, 184,302 
Rayleigh 

quotient 107, 220 
wave 33 

relaxed material constants for plates 45, 
46, 182 

resonance 26, 57 
resonator 102 
ring 217, 262 
Rosen transformer 289 
saturation 282, 289 
second-order theory 107 
self-adjoint 107 
sensor 

angular rate 91, 274 
fluid 220 
mass 210 

shell 189 
shifter 2 
spherical coordinates 201 
strain 

finite 4 
infinitesimal 9 

stress concentration 154 
stress function 138 
stress relaxation 44, 46, 62, 96, 110, 

170, 182,229,237,246 

substrate 150 
surface wave 162 
thickness-shear 

approximation 69, 74, 244 
correction factor 78, 96, 183, 239 
nonlinear 179 
static deformation 27 
vibration 22, 184 
wave 33 

thickness-stretch 
approximation 117 
deformation 111 
wave 33 

thickness-twist 33 
torsion 220 
transformer 252, 283 
transverse isotropy 32 
unimorph 133 
variation5, 11, 16, 107 
vibration 

beam 234 
circular disk 54 
cylindrical shell 202 
ring 268 
spherical shell 201 

viscosity 221 
wave 

extension 33,47 
face-shear 33, 47 
flexure 33, 64 
high-frequency 33 
low-frequency 33 
straight-crested 29, 113 
surface 33,162 
thickness-shear 33, 64, 132 
thickness-stretch 33, 115, 117, 118 
thickness-twist 33 
torsional 220 

width-shear 235 
zero-order theory 41, 228, 273 
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The Mechanics of 
Piezoelectric Structures 

A continuation of the author's previous book "An Introduction 

to the Theory of Piezoelectricity" (Springer, New York, 2005) 

on the three-dimensional theory of piezoelectricity, this volume 

covers lower dimensional theories for various piezoelectric structures 

and device applications. The development of two-, one- and zero-

dimensional theories for high frequency vibrations of piezoelectric 

plates, shells, beams, rings and parallelepipeds is systematically 

presented. In addition to linear piezoelectricity, certain nonlinear 

effects are also considered and examples for device applications 

are provided. 

The material emphasizes dynamic theories and high frequency 

motions as well as device applications as there are relatively few 

books on piezoelectric structures, especially for high frequency 

theories. The volume is destined to be one of the most systematic 

and comprehensive books on piezoelectric structures. 
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